This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JingsiYu
Also published as:
婧思 余
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
“Analyzing long and complicated sentences has always been a priority and challenge in Englishlearning. In order to conduct the parse of these sentences for Chinese English as Second Lan-guage (ESL) learners, we design the English Sentence Pattern Structure (ESPS) based on theSentence Diagramming theory. Then, we automatically construct the English Sentence PatternStructure Treebank (ESPST) through the method of rule conversion based on constituency struc-ture and evaluate the conversion results. In addition, we set up two comparative experiments,using trained parser and large language models (LLMs). The results prove that the rule-basedconversion approach is effective.”
“This paper introduces a novel crowdsourcing worker selection algorithm, enhancing annotationquality and reducing costs. Unlike previous studies targeting simpler tasks, this study con-tends with the complexities of label interdependencies in sequence labeling. The proposedalgorithm utilizes a Combinatorial Multi-Armed Bandit (CMAB) approach for worker selec-tion, and a cost-effective human feedback mechanism. The challenge of dealing with imbal-anced and small-scale datasets, which hinders offline simulation of worker selection, is tack-led using an innovative data augmentation method termed shifting, expanding, and shrink-ing (SES). Rigorous testing on CoNLL 2003 NER and Chinese OEI datasets showcased thealgorithm’s efficiency, with an increase in F1 score up to 100.04% of the expert-only base-line, alongside cost savings up to 65.97%. The paper also encompasses a dataset-independenttest emulating annotation evaluation through a Bernoulli distribution, which still led to animpressive 97.56% F1 score of the expert baseline and 59.88% cost savings. Furthermore,our approach can be seamlessly integrated into Reinforcement Learning from Human Feed-back (RLHF) systems, offering a cost-effective solution for obtaining human feedback. All re-sources, including source code and datasets, are available to the broader research community athttps://github.com/blcuicall/nlp-crowdsourcing.”