This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JinghaoZhang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Personalized text generation aims to infer users’ writing style preferences from their historical texts and generate outputs that faithfully reflect these stylistic characteristics. Existing solutions primarily adopt two paradigms: retrieval-augmented generation (RAG) and parameter-efficient fine-tuning (PEFT). While these approaches have advanced the field, they suffer from two critical limitations: (1) the entanglement of content semantics and stylistic patterns in historical texts impedes accurate modeling of user-specific writing preferences; and (2) scalability challenges arising from both RAG’s inference latency by retrieval operations and PEFT’s parameter storage requirements for per user model. To overcome these limitations, we propose StyleVector, a training-free framework that disentangles and represents personalized writing style as a vector in LLM’s activation space, enabling style-steered generation during inference without requiring costly retrieval or parameter storage. Comprehensive experiments demonstrate that our framework achieves a significant 8% relative improvement in personalized generation while reducing storage requirements by 1700 × over PEFT method.
In the era of large models, content generation is gradually shifting to Personalized Generation (PGen), tailoring content to individual preferences and needs. This paper presents the first comprehensive survey on PGen, investigating existing research in this rapidly growing field. We conceptualize PGen from a unified perspective, systematically formalizing its key components, core objectives, and abstract workflows. Based on this unified perspective, we propose a multi-level taxonomy, offering an in-depth review of technical advancements, commonly used datasets, and evaluation metrics across multiple modalities, personalized contexts, and tasks. Moreover, we envision the potential applications of PGen and highlight open challenges and promising directions for future exploration. By bridging PGen research across multiple modalities, this survey serves as a valuable resource for fostering knowledge sharing and interdisciplinary collaboration, ultimately contributing to a more personalized digital landscape.
Enhancing large language models (LLMs) with external tools has become a promising approach for solving complex tasks. As the number of available tools grows, context-based prompting methods increasingly rely on retrieval mechanisms. A common solution is to represent each tool with a unique token and train LLMs to generate the corresponding token during inference. However, this approach suffers from linear growth in representation space, leading to scalability challenges. It also limits generalization to novel or rare tools and underutilizes collaborative signals among tools in downstream tasks. In this paper, we propose SGTC, a generative tool invocation framework that introduces structure-aware semantic tokenization to encode tools as discrete code sequences. This method ensures similar tools share subtokens, enabling compression of the representation space and facilitating token sharing for new tools. We further introduce a post-guided, multistage iterative training strategy on a shared backbone model, where collaborative signals from downstream tasks guide the dynamic refinement of tool representations. Extensive experiments on the ToolBench dataset, which includes over 47,000 APIs, demonstrate the effectiveness of SGTC across various tasks, showcasing its potential as a scalable and generalizable generative tool-using paradigm in large-scale tool usage scenarios. The code is available at https://github.com/OPilgrim/Toolscaler.
Recently, the powerful large language models (LLMs) have been instrumental in propelling the progress of recommender systems (RS). However, while these systems have flourished, their susceptibility to security threats has been largely overlooked. In this work, we reveal that the introduction of LLMs into recommendation models presents new security vulnerabilities due to their emphasis on the textual content of items. We demonstrate that attackers can significantly boost an item’s exposure by merely altering its textual content during the testing phase, without requiring direct interference with the model’s training process. Additionally, the attack is notably stealthy, as it does not affect the overall recommendation performance and the modifications to the text are subtle, making it difficult for users and platforms to detect. Our comprehensive experiments across four mainstream LLM-based recommendation models demonstrate the superior efficacy and stealthiness of our approach. Our work unveils a significant security gap in LLM-based recommendation systems and paves the way for future research on protecting these systems.