Jingen Qu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Self-adaptive Dataset Construction for Real-World Multimodal Safety Scenarios
Jingen Qu | Lijun Li | Bo Zhang | Yichen Yan | Jing Shao
Findings of the Association for Computational Linguistics: EMNLP 2025

Multimodal large language models (MLLMs) are rapidly evolving, presenting increasingly complex safety challenges. However, current dataset construction methods, which are risk-oriented, fail to cover the growing complexity of real-world multimodal safety scenarios (RMS). And due to the lack of a unified evaluation metric, their overall effectiveness remains unproven. This paper introduces a novel image-oriented self-adaptive dataset construction method for RMS, which starts with images and end constructing paired text and guidance responses. Using the image-oriented method, we automatically generate an RMS dataset comprising 35,610 image–text pairs with guidance responses. Additionally, we introduce a standardized safety dataset evaluation metric: fine-tuning a safety judge model and evaluating its capabilities on other safety datasets. Extensive experiments on various tasks demonstrate the effectiveness of the proposed image-oriented pipeline. The results confirm the scalability and effectiveness of the image-oriented approach, offering a new perspective for the construction of real-world multimodal safety datasets.