Jinan Dai


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Compact and Robust Models for Japanese-English Character-level Machine Translation
Jinan Dai | Kazunori Yamaguchi
Proceedings of the 6th Workshop on Asian Translation

Character-level translation has been proved to be able to achieve preferable translation quality without explicit segmentation, but training a character-level model needs a lot of hardware resources. In this paper, we introduced two character-level translation models which are mid-gated model and multi-attention model for Japanese-English translation. We showed that the mid-gated model achieved the better performance with respect to BLEU scores. We also showed that a relatively narrow beam of width 4 or 5 was sufficient for the mid-gated model. As for unknown words, we showed that the mid-gated model could somehow translate the one containing Katakana by coining out a close word. We also showed that the model managed to produce tolerable results for heavily noised sentences, even though the model was trained with the dataset without noise.