This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JinZhang
Also published as:
瑾 张
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Stance detection is a pivotal task in Natural Language Processing (NLP), identifying textual attitudes toward various targets. Despite advances in using Large Language Models (LLMs), challenges persist due to hallucination-models generating plausible yet inaccurate content. Addressing these challenges, we introduce MPVStance, a framework that incorporates Multi-Perspective Verification (MPV) with Retrieval-Augmented Generation (RAG) across a structured five-step verification process. Our method enhances stance detection by rigorously validating each response from factual accuracy, logical consistency, contextual relevance, and other perspectives. Extensive testing on the SemEval-2016 and VAST datasets, including scenarios that challenge existing methods and comprehensive ablation studies, demonstrates that MPVStance significantly outperforms current models. It effectively mitigates hallucination issues and sets new benchmarks for reliability and accuracy in stance detection, particularly in zero-shot, few-shot, and challenging scenarios.
Stance detection, a critical task in Natural Language Processing (NLP), aims to identify the attitude expressed in text toward specific targets. Despite advancements in Large Language Models (LLMs), challenges such as limited interpretability and handling nuanced content persist. To address these issues, we propose the Multi-Path Reasoning Framework (MPRF), a novel framework that generates, evaluates, and integrates multiple reasoning paths to improve accuracy, robustness, and transparency in stance detection. Unlike prior work that relies on single-path reasoning or static explanations, MPRF introduces a structured end-to-end pipeline: it first generates diverse reasoning paths through predefined perspectives, then dynamically evaluates and optimizes each path using LLM-based scoring, and finally fuses the results via weighted aggregation to produce interpretable and reliable predictions. Extensive experiments on the SEM16, VAST, and PStance datasets demonstrate that MPRF outperforms existing models. Ablation studies further validate the critical role of MPRF’s components, highlighting its effectiveness in enhancing interpretability and handling complex stance detection tasks.
Multimodal Stance Detection (MSD) aims to determine a user’s stance - support, oppose, or neutral - toward a target by analyzing multimodal content such as texts and images from social media. Existing MSD methods struggle with generalizing to unseen targets and handling modality inconsistencies. To address these challenges, we propose the Target-driven Multi-modal Alignment and Dynamic Weighting Model (T-MAD), which combines target-driven multi-modal alignment and dynamic weighting mechanisms to capture target-specific relationships and balance modality contributions. The model incorporates iterative reasoning to iteratively refine predictions, achieving robust performance in both in-target and zero-shot settings. Experiments on the MMSD and MultiClimate datasets show that T-MAD outperforms state-of-the-art models, with optimal results achieved using RoBERTa, ViT, and an iterative depth of 5. Ablation studies further confirm the importance of multi-modal alignment and dynamic weighting in enhancing model effectiveness.
End-to-end automatic speech recognition (ASR) based on deep learning has achieved impressive progress in recent years. However, the performance of ASR foundation model often degrades significantly on out-of-domain data due to real-world domain shifts. Test-Time Adaptation (TTA) methods aim to mitigate this issue by adapting models during inference without access to source data. Despite recent progress, existing ASR TTA methods often struggle with instability under continual and long-term distribution shifts. To alleviate the risk of performance collapse due to error accumulation, we propose Dynamic Model-bank Single-Utterance Test-time Adaptation (DMSUTA), a sustainable continual TTA framework based on adaptive ASR model ensembling. DMSUTA maintains a dynamic model bank, from which a subset of checkpoints is selected for each test sample based on confidence and uncertainty criteria. To preserve both model plasticity and long-term stability, DMSUTA actively manages the bank by filtering out potentially collapsed models. This design allows DMSUTA to continually adapt to evolving domain shifts in ASR test-time scenarios. Experiments on diverse, continuously shifting ASR TTA benchmarks show that DMSUTA consistently outperforms existing continual TTA baselines, demonstrating superior robustness to domain shifts in ASR.
Multi-modal Chain-of-Thought (MCoT) requires models to leverage knowledge from both textual and visual modalities for step-by-step reasoning, which gains increasing attention. Nevertheless, the current MCoT benchmark still faces some challenges: (1) absence of visual modal reasoning, (2) single-step visual modal reasoning, and (3) domain missing, thereby hindering the development of MCoT. Motivated by this, we introduce a novel benchmark (M3CoT) to address the above challenges, advancing the multi-domain, multi-step, and multi-modal CoT. Additionally, we conduct a thorough evaluation involving abundant MCoT approaches on Vision Large Language Models (VLLMs). In addition, we highlight that the current VLLMs still struggle to correctly reason in M3CoT and there is a large gap between VLLMs and human performance in M3CoT, despite their superior results on previous MCoT benchmarks. To our knowledge, we take the first meaningful step toward the multi-domain, multi-step, and multi-modal scenario in MCoT. We hope that M3CoT will serve as a valuable resource, providing a pioneering foundation in multi-domain, multi-step, multi-modal chain-of-thought research.
Stance detection aims at inferring an author’s attitude towards a specific target in a text. Prior methods mainly consider target-related background information for a better understanding of targets while neglecting the accompanying input texts. In this study, we propose to prompt Large Language Models (LLMs) to explicitly extract the relationship between paired text and target as contextual knowledge. We then inject such LLM-driven knowledge into a generation model BART to exploit the rich contexts and semantics. Moreover, to further enhance the decoding capability of BART, a novel prototypical contrastive scheme is designed to align input contents with stance labels. Our experimental results demonstrate the state-of-the-art performance across several publicly available datasets, showcasing effectiveness in both zero-shot and cross-target stance detection scenarios. We publicly release our code to facilitate future research.