Jihu Mun


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Residualized Similarity for Faithfully Explainable Authorship Verification
Peter Zeng | Pegah Alipoormolabashi | Jihu Mun | Gourab Dey | Nikita Soni | Niranjan Balasubramanian | Owen Rambow | H. Schwartz
Findings of the Association for Computational Linguistics: EMNLP 2025

Responsible use of Authorship Verification (AV) systems not only requires high accuracy but also interpretable solutions. More importantly, for systems to be used to make decisions with real-world consequences requires the model’s prediction to be explainable using interpretable features that can be traced to the original texts. Neural methods achieve high accuracies, but their representations lack direct interpretability. Furthermore, LLM predictions cannot be explained faithfully – if there is an explanation given for a prediction, it doesn’t represent the reasoning process behind the model’s prediction. In this paper, we introduce Residualized Similarity (RS), a novel method that supplements systems using interpretable features with a neural network to improve their performance while maintaining interpretability. Authorship verification is fundamentally a similarity task, where the goal is to measure how alike two documents are. The key idea is to use the neural network to predict a similarity residual, i.e. the error in the similarity predicted by the interpretable system. Our evaluation across four datasets shows that not only can we match the performance of state-of-the-art authorship verification models, but we can show how and to what degree the final prediction is faithful and interpretable.