Jihang Li


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Enhancing Talent Search Ranking with Role-Aware Expert Mixtures and LLM-based Fine-Grained Job Descriptions
Jihang Li | Bing Xu | Zulong Chen | Chuanfei Xu | Minping Chen | Suyu Liu | Ying Zhou | Zeyi Wen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Talent search is a cornerstone of modern recruitment systems, yet existing approaches often struggle to capture nuanced job-specific preferences, model recruiter behavior at a fine-grained level, and mitigate noise from subjective human judgments. We present a novel framework that enhances talent search effectiveness and delivers substantial business value through two key innovations: (i) leveraging LLMs to extract fine-grained recruitment signals from job descriptions and historical hiring data, and (ii) employing a role-aware multi-gate MoE network to capture behavioral differences across recruiter roles. To further reduce noise, we introduce a multi-task learning module that jointly optimizes click-through rate (CTR), conversion rate (CVR), and resume matching relevance. Experiments on real-world recruitment data and online A/B testing show relative AUC gains of 1.70% (CTR) and 5.97% (CVR), and a 17.29% lift in click-through conversion rate. These improvements reduce dependence on external sourcing channels, enabling an estimated annual cost saving of millions of CNY.