This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JiefuGong
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper addresses the task of Chinese Lexical Simplification (CLS). A key challenge in CLS is the scarcity of data resources. We begin by evaluating the performance of various language models at different scales in unsupervised and few-shot settings, finding that their effectiveness is sensitive to word types. Expensive large language models (LLMs), such as GPT-4, outperform small models in simplifying complex content words and Chinese idioms from the dictionary.To take advantage of this, we propose an automatic knowledge distillation framework called PivotKD for generating training data to fine-tune small models.In addition, all models face difficulties with out-of-dictionary (OOD) words such as internet slang.To address this, we implement a retrieval-based interpretation augmentation (RIA) strategy, injecting word interpretations from external resources into the context.Experimental results demonstrate that fine-tuned small models outperform GPT-4 in simplifying complex content words and Chinese idioms. Additionally, the RIA strategy enhances the performance of most models, particularly in handling OOD words. Our findings suggest that a hybrid approach could optimize CLS performance while managing inference costs. This would involve configuring choices such as model scale, linguistic resources, and the use of RIA based on specific word types to strike an ideal balance.
This paper presents a novel sentence ordering method by plugging a coherence verifier (CoVer) into pair-wise ranking-based and sequence generation-based methods. It does not change the model parameters of the baseline, and only verifies the coherence of candidate (partial) orders produced by the baseline and reranks them in beam search. We also propose a coherence model as CoVer with a novel graph formulation and a novel data construction strategy for contrastive pre-training independently of the sentence ordering task. Experimental results on four benchmarks demonstrate the effectiveness of our method with topological sorting-based and pointer network-based methods as the baselines. Detailed analyses illustrate how CoVer improves the baselines and confirm the importance of its graph formulation and training strategy. Our code is available at https://github.com/SN-Jia/SO_with_CoVer.
Metaphor identification is usually formulated as a sequence labeling or a syntactically related word-pair classification problem. In this paper, we propose a novel formulation of metaphor identification as a relation extraction problem. We introduce metaphorical relations, which are links between two spans, a target span and a source-related span, which are realized in sentences. Based on spans, we can use more flexible and precise text units beyond single words for capturing the properties of the target and the source. We create a dataset for Chinese metaphorical relation extraction, with more than 4,200 sentences annotated with metaphorical relations, corresponding target/source-related spans, and fine-grained span types. We develop a span-based end-to-end model for metaphorical relation extraction and demonstrate its effectiveness. We expect that metaphorical relation extraction can serve as a bridge for connecting linguistic and conceptual metaphor processing. The dataset is at https://github.com/cnunlp/CMRE.
Automated Essay Assessment (AEA) aims to judge students’ writing proficiency in an automatic way. This paper presents a Chinese AEA system IFlyEssayAssess (IFlyEA), targeting on evaluating essays written by native Chinese students from primary and junior schools. IFlyEA provides multi-level and multi-dimension analytical modules for essay assessment. It has state-of-the-art grammar level analysis techniques, and also integrates components for rhetoric and discourse level analysis, which are important for evaluating native speakers’ writing ability, but still challenging and less studied in previous work. Based on the comprehensive analysis, IFlyEA provides application services for essay scoring, review generation, recommendation, and explainable analytical visualization. These services can benefit both teachers and students during the process of writing teaching and learning.
Grammatical error diagnosis is an important task in natural language processing. This paper introduces our system at NLPTEA-2020 Task: Chinese Grammatical Error Diagnosis (CGED). CGED aims to diagnose four types of grammatical errors which are missing words (M), redundant words (R), bad word selection (S) and disordered words (W). Our system is built on the model of multi-layer bidirectional transformer encoder and ResNet is integrated into the encoder to improve the performance. We also explore two ensemble strategies including weighted averaging and stepwise ensemble selection from libraries of models to improve the performance of single model. In official evaluation, our system obtains the highest F1 scores at identification level and position level. We also recommend error corrections for specific error types and achieve the second highest F1 score at correction level.
This paper describes our system at NLPTEA-2018 Task #1: Chinese Grammatical Error Diagnosis. Grammatical Error Diagnosis is one of the most challenging NLP tasks, which is to locate grammar errors and tell error types. Our system is built on the model of bidirectional Long Short-Term Memory with a conditional random field layer (BiLSTM-CRF) but integrates with several new features. First, richer features are considered in the BiLSTM-CRF model; second, a probabilistic ensemble approach is adopted; third, Template Matcher are used during a post-processing to bring in human knowledge. In official evaluation, our system obtains the highest F1 scores at identifying error types and locating error positions, the second highest F1 score at sentence level error detection. We also recommend error corrections for specific error types and achieve the best F1 performance among all participants.