Jie Shi

Other people with similar names: Jie Shi

Unverified author pages with similar names: Jie Shi


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Skeletons Matter: Dynamic Data Augmentation for Text-to-Query
Yuchen Ji | Bo Xu | Jie Shi | Jiaqing Liang | Deqing Yang | Yu Mao | Hai Chen | Yanghua Xiao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The task of translating natural language questions into query languages has long been a central focus in semantic parsing. Recent advancements in Large Language Models (LLMs) have significantly accelerated progress in this field. However, existing studies typically focus on a single query language, resulting in methods with limited generalizability across different languages. In this paper, we formally define the Text-to-Query task paradigm, unifying semantic parsing tasks across various query languages. We identify query skeletons as a shared optimization target of Text-to-Query tasks, and propose a general dynamic data augmentation framework that explicitly diagnoses model-specific weaknesses in handling these skeletons to synthesize targeted training data. Experiments on four Text-to-Query benchmarks demonstrate that our method achieves state-of-the-art performance using only a small amount of synthesized data, highlighting the efficiency and generality of our approach and laying a solid foundation for unified research on Text-to-Query tasks. We release our code at https://github.com/jjjycaptain/Skeletron

pdf bib
Dialect-SQL: An Adaptive Framework for Bridging the Dialect Gap in Text-to-SQL
Jie Shi | Xi Cao | Bo Xu | Jiaqing Liang | Yanghua Xiao | Jia Chen | Peng Wang | Wei Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Text-to-SQL is the task of translating natural language questions into SQL queries based on relational databases. Different databases implement their own SQL dialects, leading to variations in syntax. As a result, SQL queries designed for one database may not execute properly in another, creating a dialect gap. Existing Text-to-SQL research primarily focuses on specific database systems, limiting adaptability to different dialects. This paper proposes a novel adaptive framework called Dialect-SQL, which employs Object Relational Mapping (ORM) code as an intermediate language to bridge this gap. Given a question, we guide Large Language Models (LLMs) to first generate ORM code, which is then parsed into SQL queries targeted for specific databases. However, there is a lack of high-quality Text-to-Code datasets that enable LLMs to effectively generate ORM code. To address this issue, we propose a bootstrapping approach to synthesize ORM code, where verified ORM code is iteratively integrated into a demonstration pool that serves as in-context examples for ORM code generation. Our experiments demonstrate that Dialect-SQL significantly enhances dialect adaptability, outperforming traditional methods that generate SQL queries directly. Our code and data are released at https://github.com/jieshi10/orm-sql.