Jiayu Liao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
TEaR: Improving LLM-based Machine Translation with Systematic Self-Refinement
Zhaopeng Feng | Yan Zhang | Hao Li | Bei Wu | Jiayu Liao | Wenqiang Liu | Jun Lang | Yang Feng | Jian Wu | Zuozhu Liu
Findings of the Association for Computational Linguistics: NAACL 2025

Large Language Models (LLMs) have achieved impressive results in Machine Translation (MT). However, human evaluations reveal that LLM-generated translations still contain various errors. Notably, feeding the error information back into the LLMs can facilitate self-refinement, leading to enhanced translation quality. Motivated by these findings, we introduce TEaR (Translate, Estimate, and Refine), a systematic LLM-based self-refinement framework aimed at bootstrapping translation performance. Our key results show that: 1) TEaR framework enables LLMs to improve their translation quality relying solely on self-feedback, measured by both automatic metrics and Multidimensional Quality Metrics (MQM) scores; 2) TEaR autonomously selects improvements, ensuring a robust translation quality baseline while outperforming both internal refinement and external feedback methods. Error analysis and iterative refinement experiments show its ability to continuously reduce translation errors and enhance overall translation quality. Our code and data are publicly available at https://github.com/fzp0424/self_correct_mt.