This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JiaweiLi
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Large Language Models (LLMs) have shown impressive capabilities in language understanding and generation, leading to growing interest in zero-shot relation triplet extraction (ZeroRTE), a task that aims to extract triplets for unseen relations without annotated data. However, existing methods typically depend on costly fine-tuning and lack the structured semantic guidance required for accurate and interpretable extraction. To overcome these limitations, we propose FrameRTE, a novel ZeroRTE framework that adopts a “frame first, then extract” paradigm. Rather than extracting triplets directly, FrameRTE first constructs high-quality Relation Semantic Frames (RSFs) through a unified pipeline that integrates frame retrieval, synthesis, and enhancement. These RSFs serve as structured and interpretable knowledge scaffolds that guide frozen LLMs in the extraction process. Building upon these RSFs, we further introduce a human-inspired three-stage reasoning pipeline consisting of semantic frame evocation, frame-guided triplet extraction, and core frame elements validation to achieve semantically constrained extraction. Experiments demonstrate that FrameRTE achieves competitive zero-shot performance on multiple benchmarks. Moreover, the RSFs we construct serve as high-quality semantic resources that can enhance other extraction methods, showcasing the synergy between linguistic knowledge and foundation models.
Knowledge Graph Question Answering (KGQA) aims to answer natural language questions based on knowledge graphs.Recent approaches apply the Retrieval-Augmented Generation (RAG) paradigm to incorporate Large Language Models (LLMs) to this task, where a retriever selects a question-related subgraph and an LLM-based generator is then adopted to predict answers based on the retrieved subgraph. However, the subgraph selection process is non-differentiable, preventing end-to-end training of the retriever and the generator in these approaches, which leads to sub-optimal performance. To overcome this limitation, this paper proposes a Differentiable RAG (D-RAG) approach that jointly optimizes the retriever and the generator for KGQA. Via reformulating the optimization objective as an expectation over a subgraph distribution with respect to answer generation likelihood, D-RAG makes the joint optimization feasible. Specifically, it implements this joint optimization through a differentiable subgraph sampling and prompting module that integrates Gumbel-Softmax reparameterization for sampling and a neural prompt construction process that fuses semantic and structural information. Experimental results on WebQSP and CWQ demonstrate that D-RAG outperforms state-of-the-art approaches.
Although substantial efforts have been made to mitigate catastrophic forgetting in continual learning, the intrinsic mechanisms are not well understood. In this work, we demonstrate the existence of “pseudo forgetting”: the performance degradation in previous tasks is not attributed to a loss of capabilities, but rather to the failure of the instructions to activate the appropriate model capabilities. We show that the model’s performance on previous tasks can be restored through two simple interventions: (1) providing partial external correct rationale, and (2) appending semantically meaningless suffixes to the original instructions, to guide the generation of correct rationales. Through empirical analysis of the internal mechanisms governing rationale generation, we reveal that models exhibiting pseudo forgetting show reduced instruction dependence during rationale generation, leading to suboptimal activation of their inherent capabilities. Based on this insight, we propose Rationale-Guidance Difficulty based Replay (RGD-R) framework that dynamically allocates replay data based on the model’s ability to correctly leverage the intrinsic capabilities. Experimental results demonstrate that RGD-R effectively mitigates pseudo forgetting while maintaining model plasticity.
Large Language Models (LLMs) demonstrate significant value in domain-specific applications, benefiting from their fundamental capabilities. Nevertheless, it is still unclear which fundamental capabilities contribute to success in specific domains. Moreover, the existing benchmark-based evaluation cannot effectively reflect the performance of real-world applications. In this survey, we review recent advances of LLMs in domain applications, aiming to summarize the fundamental capabilities and their collaboration. Furthermore, we establish connections between fundamental capabilities and specific domains, evaluating the varying importance of different capabilities. Based on our findings, we propose a reliable strategy for domains to choose more robust backbone LLMs for real-world applications.
Language style is necessary for AI systems to accurately understand and generate diverse human language. However, previous text style transfer primarily focused on sentence-level data-driven approaches, limiting exploration of potential problems in large language models (LLMs) and the ability to meet complex application needs. To overcome these limitations, we introduce a novel task called Public-Speaking Style Transfer (PSST), which aims to simulate humans to transform passage-level, official texts into a public-speaking style. Grounded in the analysis of real-world data from a linguistic perspective, we decompose public-speaking style into key sub-styles to pose challenges and quantify the style modeling capability of LLMs. For such intricate text style transfer, we further propose a fine-grained evaluation framework to analyze the characteristics and identify the problems of stylized texts. Comprehensive experiments suggest that current LLMs struggle to generate public speaking texts that align with human preferences, primarily due to excessive stylization and loss of semantic information. We will release our data, code, and model upon acceptance.
In this paper, we describe the methods used for Quantitative Natural Language Inference (QNLI), and Quantitative Question Answering (QQA) in task1 of Semeval2024 NumEval. The challenge’s focus is to enhance the model’s quantitative understanding consequently improving its performance on certain tasks. We accomplish this task from two perspectives: (1) By integrating real-world numerical comparison data during the supervised fine-tuning (SFT) phase, we enhanced the model’s numerical sensitivity. (2) We develop an innovative reward model scoring mechanism, leveraging reinforcement learning from human feedback (RLHF) techniques to improve the model’s reasoning completeness.
Rewriting incomplete and ambiguous utterances can improve dialogue models’ understanding of the context and help them generate better results. However, the existing end-to-end models will have the problem of too large search space, resulting in poor quality of rewriting results. We propose a 2-phase rewriting framework which first predicts the empty slots in the utterance that need to be completed, and then generate the part to be filled into each positions. Our framework is simple to implement, fast to run, and achieves the state-of-the-art results on several public rewriting datasets.
Few-shot abstractive summarization has become a challenging task in natural language generation. To support it, we developed a novel soft prompts architecture coupled with a prompt pre-training plus prompt fine-tuning paradigm, which is effective and tunes only extremely light parameters. To meet the structure of the generation models, the soft prompts comprise continuous input embeddings across an encoder and a decoder. Importantly, a new inner-prompt placed in the text is introduced to capture document-level information. The aim is to devote attention to understanding the document that better prompts the model to generate document-related content. In the training process, the prompt pre-training with self-supervised pseudo-data firstly teaches the model basic summarizing capability. Then, with few-shot examples, only the designed lightweight soft prompts are fine-tuned. Experimental results on the CNN/DailyMail and XSum datasets show that our method, with only 0.1% of the parameters, outperforms full-model tuning where all model parameters are tuned. It also surpasses Prompt Tuning by a large margin and delivers competitive results against Prefix-Tuning with 3% of the parameters.