This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
This paper presents LLaMA-Berry, an advanced mathematical reasoning framework to enhance the problem-solving ability of large language models (LLMs). The framework combines Monte Carlo Tree Search with Self-Refine (SR-MCTS) to optimize the reasoning paths and utilizes a pairwise reward model to evaluate different paths globally. By leveraging the self-critique and rewriting capabilities of LLMs, our SR-MCTS overcomes the inefficiencies and limitations of conventional step-wise and greedy search algorithms, enabling a more efficient exploration of solution spaces. To guide the search process, we propose the Pairwise Preference Reward Model (PPRM), which predicts pairwise preferences between solutions through instruction-following capabilities trained by Reinforcement Learning from Human Feedback (RLHF). Finally, the Enhanced Borda Count (EBC) method is adopted to synthesize pairwise preferences into global quantile scores for evaluations. This approach mitigates the challenges of scoring variability and non-independent distributions in mathematical reasoning tasks. The framework has been tested on general and advanced benchmarks, showing superior search efficiency and performance compared to existing open-source and closed-source methods, particularly in complex Olympiad-level benchmarks, including AIME24 and AMC23.
“In Chinese Named Entity Recognition, character substitution is a complicated linguistic phe-nomenon. Some Chinese characters are quite similar as they share the same components or havesimilar pronunciations. People replace characters in a named entity with similar characters togenerate a new collocation but refer to the same object. As a result, it always leads to unrecog-nizable or mislabeling errors in the NER task. In this paper, we propose a lightweight method,MFE-NER, which fuses glyph and phonetic features to help pre-trained language models handlethe character substitution problem in the NER task with limited extra cost. Basically, in the glyphdomain, we disassemble Chinese characters into Five-Stroke components to represent structurefeatures. In the phonetic domain, an improved phonetic system is proposed in our work, makingit reasonable to describe phonetic similarity among Chinese characters. Experiments demon-strate that our method performs especially well in detecting character substitutions while slightlyimproving the overall performance of Chinese NER.”
Despite increasing interest in the automatic detection of media frames in NLP, the problem is typically simplified as single-label classification and adopts a topic-like view on frames, evading modelling the broader document-level narrative. In this work, we revisit a widely used conceptualization of framing from the communication sciences which explicitly captures elements of narratives, including conflict and its resolution, and integrate it with the narrative framing of key entities in the story as heroes, victims or villains. We adapt an effective annotation paradigm that breaks a complex annotation task into a series of simpler binary questions, and present an annotated data set of English news articles, and a case study on the framing of climate change in articles from news outlets across the political spectrum. Finally, we explore automatic multi-label prediction of our frames with supervised and semi-supervised approaches, and present a novel retrieval-based method which is both effective and transparent in its predictions. We conclude with a discussion of opportunities and challenges for future work on document-level models of narrative framing.