This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JiaruiZhang
Also published as:
家瑞 张
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
In modern commercial systems, including Recommendation, Ranking, and E-Commerce platforms, there is a trend towards improving customer experiences by incorporating Personalization context as input into Large Language Models (LLM). However, LLMs often struggle to effectively parse and utilize sparse and complex personal context without additional processing or contextual enrichment, underscoring the need for more sophisticated context understanding mechanisms. In this work, we propose Guided Profile Generation (GPG), a general method designed to generate personal profiles in natural language. As is observed, intermediate guided profile generation enables LLMs to summarize, and extract the important, distinctive features from the personal context into concise, descriptive sentences, precisely tailoring their generation more closely to an individual’s unique habits and preferences. Our experimental results show that GPG improves LLM’s personalization ability across different tasks, for example, it increases 37% accuracy in predicting personal preference compared to directly feeding the LLMs with raw personal context.
Large Language Models (LLMs) have achieved impressive results in Machine Translation by simply following instructions, even without training on parallel data. However, LLMs still face challenges on low-resource languages due to the lack of pre-training data. In real-world situations, humans can become proficient in their native languages through abundant and meaningful social interactions and can also learn foreign languages effectively using well-organized textbooks. Drawing inspiration from human learning patterns, we introduce the Translate After LEarNing Textbook (TALENT) approach, which aims to enhance LLMs’ ability to translate low-resource languages by learning from a textbook. TALENT follows a step-by-step process: (1) Creating a Textbook for low-resource languages. (2) Guiding LLMs to absorb the Textbook’s content for Syntax Patterns. (3) Enhancing translation by utilizing the Textbook and Syntax Patterns. We thoroughly assess TALENT’s performance using 112 low-resource languages from FLORES-200 with two LLMs: ChatGPT and BLOOMZ. Evaluation across three different metrics reveals that TALENT consistently enhances translation performance by 14.8% compared to zero-shot baselines. Further analysis demonstrates that TALENT not only improves LLMs’ comprehension of low-resource languages but also equips them with the knowledge needed to generate accurate and fluent sentences in these languages.
Recently, document-level neural machine translation (NMT) has become a hot topic in the community of machine translation. Despite its success, most of existing studies ignored the discourse structure information of the input document to be translated, which has shown effective in other tasks. In this paper, we propose to improve document-level NMT with the aid of discourse structure information. Our encoder is based on a hierarchical attention network (HAN) (Miculicich et al., 2018). Specifically, we first parse the input document to obtain its discourse structure. Then, we introduce a Transformer-based path encoder to embed the discourse structure information of each word. Finally, we combine the discourse structure information with the word embedding before it is fed into the encoder. Experimental results on the English-to-German dataset show that our model can significantly outperform both Transformer and Transformer+HAN.