Jiaqi Song


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
FastAdaSP: Multitask-Adapted Efficient Inference for Large Speech Language Model
Yichen Lu | Jiaqi Song | Chao-Han Huck Yang | Shinji Watanabe
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

In this study, we aim to explore Multitask Speech Language Model (SpeechLM) efficient inference via token reduction. Unlike other modalities such as vision or text, speech has unique temporal dependencies, making previous efficient inference works on other modalities not directly applicable. Furthermore, methods for efficient SpeechLM inference on long sequence and sparse signals remain largely unexplored. In this work, we propose FastAdaSP, a weighted token merging framework specifically designed for various speech-related tasks to improve the trade-off between efficiency and performance. Experimental results on WavLLM and Qwen-Audio show that our method achieves the state-of-the-art (SOTA) efficiency-performance trade-off compared with other baseline methods. Specifically, FastAdaSP achieved 7x memory efficiency and 1.83x decoding throughput without any degradation on tasks like Emotion Recognition (ER) and Spoken Question Answering (SQA).