This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JianxingZheng
Also published as:
建兴 郑,
JianXing Zheng
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The subtlety of emotional expressions makes implicit emotion analysis (IEA) particularly sensitive to user-specific characteristics. Current studies personalize emotion analysis by focusing on the author but neglect the impact of the intended reader on implicit emotional feedback. In this paper, we introduce Personalized IEA (PIEA) and present the RAPPIE model, which addresses subjective variability by incorporating reader feedback. In particular, (1) we create reader agents based on large language models to simulate reader feedback, overcoming the issue of “spiral of silence effect” and data incompleteness of real reader reaction. (2) We develop a role-aware multi-view graph learning to model the emotion interactive propagation process in scenarios with sparse reader information. (3) We construct two new PIEA datasets covering English and Chinese social media with detailed user metadata, addressing the text-centric limitation of existing datasets. Extensive experiments show that RAPPIE significantly outperforms state-of-the-art baselines, demonstrating the value of incorporating reader feedback in PIEA.
Document-level Event Extraction (DEE) is a vital task in NLP as it seeks to automatically recognize and extract event information from a document. However, current approaches often overlook intricate relationships among events and subtle correlations among arguments within a document, which can significantly impact the effectiveness of event type recognition and the extraction of cross-sentence arguments in DEE task. This paper proposes a novel Correlation Association Interactive Network (CAINet), comprising two key components: event relationship graph and argument correlation graph. In particular, the event relationship graph models the relationship among various events through structural associations among event nodes and sentence nodes, to improve the accuracy of event recognition. On the other hand, the arguments correlation graph models the correlations among arguments by quantifying the strength of association among arguments, to effectively aggregate cross-sentence arguments, contributing to the overall success of DEE. Furthermore, we use the large language model to execute DEE task experiments. Experimental results show the proposed CAINet outperforms existing state-of-the-art models and large language models in terms of F1-score across two benchmark datasets.
Most existing event causality identification (ECI) methods rarely consider the event causal label information and the interaction information between event pairs. In this paper, we propose a framework to enrich the representation of event pairs by introducing the event causal label information and the event pair interaction information. In particular, 1) we design an event-causal-label-aware module to model the event causal label information, in which we design the event causal label prediction task as an auxiliary task of ECI, aiming to predict which events are involved in the causal relationship (we call them causality-related events) by mining the dependencies between events. 2) We further design an event pair interaction graph module to model the interaction information between event pairs, in which we construct the interaction graph with event pairs as nodes and leverage graph attention mechanism to model the degree of dependency between event pairs. The experimental results show that our approach outperforms previous state-of-the-art methods on two benchmark datasets EventStoryLine and Causal-TimeBank.
Aspect-Based Argument Mining (ABAM) is a critical task in computational argumentation. Existing methods have primarily treated ABAM as a nested named entity recognition problem, overlooking the need for tailored strategies to effectively address the specific challenges of ABAM tasks. To this end, we propose a layer-based Hierarchical Enhancement Framework (HEF) for ABAM, and introduce three novel components: the Semantic and Syntactic Fusion (SSF) component, the Batch-level Heterogeneous Graph Attention Network (BHGAT) component, and the Span Mask Interactive Attention (SMIA) component. These components serve the purposes of optimizing underlying representations, detecting argument unit stances, and constraining aspect term recognition boundaries, respectively. By incorporating these components, our framework enables better handling of the challenges and improves the performance and accuracy in argument unit and aspect term recognition. Experiments on multiple datasets and various tasks verify the effectiveness of the proposed framework and components.
Emotion inference in multi-turn conversations aims to predict the participant’s emotion in the next upcoming turn without knowing the participant’s response yet, and is a necessary step for applications such as dialogue planning. However, it is a severe challenge to perceive and reason about the future feelings of participants, due to the lack of utterance information from the future. Moreover, it is crucial for emotion inference to capture the characteristics of emotional propagation in conversations, such as persistence and contagiousness. In this study, we focus on investigating the task of emotion inference in multi-turn conversations by modeling the propagation of emotional states among participants in the conversation history, and propose an addressee-aware module to automatically learn whether the participant keeps the historical emotional state or is affected by others in the next upcoming turn. In addition, we propose an ensemble strategy to further enhance the model performance. Empirical studies on three different benchmark conversation datasets demonstrate the effectiveness of the proposed model over several strong baselines.
Detecting public sentiment drift is a challenging task due to sentiment change over time. Existing methods first build a classification model using historical data and subsequently detect drift if the model performs much worse on new data. In this paper, we focus on distribution learning by proposing a novel Hierarchical Variational Auto-Encoder (HVAE) model to learn better distribution representation, and design a new drift measure to directly evaluate distribution changes between historical data and new data. Our experimental results demonstrate that our proposed model achieves better results than three existing state-of-the-art methods.