Jianning Li


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
On the Impact of Cross-Domain Data on German Language Models
Amin Dada | Aokun Chen | Cheng Peng | Kaleb Smith | Ahmad Idrissi-Yaghir | Constantin Seibold | Jianning Li | Lars Heiliger | Christoph Friedrich | Daniel Truhn | Jan Egger | Jiang Bian | Jens Kleesiek | Yonghui Wu
Findings of the Association for Computational Linguistics: EMNLP 2023

Traditionally, large language models have been either trained on general web crawls or domain-specific data. However, recent successes of generative large language models, have shed light on the benefits of cross-domain datasets. To examine the significance of prioritizing data diversity over quality, we present a German dataset comprising texts from five domains, along with another dataset aimed at containing high-quality data. Through training a series of models ranging between 122M and 750M parameters on both datasets, we conduct a comprehensive benchmark on multiple downstream tasks. Our findings demonstrate that the models trained on the cross-domain dataset outperform those trained on quality data alone, leading to improvements up to 4.45% over the previous state-of-the-art.