This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JianfengLi
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Dialogue agents powered by Large Language Models (LLMs) show superior performance in various tasks. Despite the better user understanding and human-like responses, their **lack of controllability** remains a key challenge, often leading to unfocused conversations or task failure. To address this, we introduce Standard Operating Procedure (SOP) to regulate dialogue flow. Specifically, we propose **ChatSOP**, a novel SOP-guided Monte Carlo Tree Search (MCTS) planning framework designed to enhance the controllability of LLM-driven dialogue agents. To enable this, we curate a dataset comprising SOP-annotated multi-scenario dialogues, generated using a semi-automated role-playing system with GPT-4o and validated through strict manual quality control. Additionally, we propose a novel method that integrates Chain of Thought reasoning with supervised fine-tuning for SOP prediction and utilizes SOP-guided Monte Carlo Tree Search for optimal action planning during dialogues. Experimental results demonstrate the effectiveness of our method, such as achieving a 27.95% improvement in action accuracy compared to baseline models based on GPT-3.5 and also showing notable gains for open-source models. Dataset and codes are publicly available.
Pinyin input method engine (IME) refers to the transformation tool from pinyin sequence to Chinese characters, which is widely used on mobile phone applications. Due to the homophones, Pinyin IME suffers from the one-to-many mapping problem in the process of pinyin sequences to Chinese characters. To solve the above issue, this paper makes the first exploration to leverage an effective conditional variational mechanism (CVM) for pinyin IME. However, to ensure the stable and smooth operation of Pinyin IME under low-resource conditions (e.g., on offline mobile devices), we should balance diversity, accuracy, and efficiency with CVM, which is still challenging. To this end, we employ a novel strategy that simplifies the complexity of semantic encoding by facilitating the interaction between pinyin and the Chinese character information during the construction of continuous latent variables. Concurrently, the accuracy of the outcomes is enhanced by capitalizing on the discrete latent variables. Experimental results demonstrate the superior performance of our method.
Paraphrase generation is a longstanding NLP task and achieves great success with the aid of large corpora. However, transferring a paraphrasing model to another domain encounters the problem of domain shifting especially when the data is sparse. At the same time, widely using large pre-trained language models (PLMs) faces the overfitting problem when training on scarce labeled data. To mitigate these two issues, we propose, LAPA, an effective adapter for PLMs optimized by meta-learning. LAPA has three-stage training on three types of related resources to solve this problem: 1. pre-training PLMs on unsupervised corpora, 2. inserting an adapter layer and meta-training on source domain labeled data, and 3. fine-tuning adapters on a small amount of target domain labeled data. This method enables paraphrase generation models to learn basic language knowledge first, then learn the paraphrasing task itself later, and finally adapt to the target task. Our experimental results demonstrate that LAPA achieves state-of-the-art in supervised, unsupervised, and low-resource settings on three benchmark datasets. With only 2% of trainable parameters and 1% labeled data of the target task, our approach can achieve a competitive performance with previous work.
This paper reports on the first participation of TCH (Toshiba (China) Research and Development Center) at the IWSLT evaluation campaign. We participated in all the 5 translation tasks with Chinese as source language or target language. For Chinese-English and English-Chinese translation, we used hybrid systems that combine rule-based machine translation (RBMT) method and statistical machine translation (SMT) method. For Chinese-Spanish translation, phrase-based SMT models were used. For the pivot task, we combined the translations generated by a pivot based statistical translation model and a statistical transfer translation model (firstly, translating from Chinese to English, and then from English to Spanish). Moreover, for better performance of MT, we improved each module in the MT systems as follows: adapting Chinese word segmentation to spoken language translation, selecting out-of-domain corpus to build language models, using bilingual dictionaries to correct word alignment results, handling NE translation and selecting translations from the outputs of multiple systems. According to the automatic evaluation results on the full test sets, we top in all the 5 tasks.