This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Recent advancement in code understanding and generation demonstrates that code LLMs fine-tuned on a high-quality instruction dataset can gain powerful capabilities to address wide-ranging code-related tasks. However, most previous existing methods mainly view each programming language in isolation and ignore the knowledge transfer among different programming languages. To bridge the gap among different programming languages, we introduce a novel multi-agent collaboration framework to enhance multilingual instruction tuning for code LLMs, where multiple language-specific intelligent agent components with generation memory work together to transfer knowledge from one language to another efficiently and effectively. Specifically, we first generate the language-specific instruction data from the code snippets and then provide the generated data as the seed data for language-specific agents. Multiple language-specific agents discuss and collaborate to formulate a new instruction and its corresponding solution (A new programming language or existing programming language), To further encourage the cross-lingual transfer, each agent stores its generation history as memory and then summarizes its merits and faults. Finally, the high-quality multilingual instruction data is used to encourage knowledge transfer among different programming languages to train Qwen2.5-xCoder. Experimental results on multilingual programming benchmarks demonstrate the superior performance of Qwen2.5-xCoder in sharing common knowledge, highlighting its potential to reduce the cross-lingual gap.
Repository-level code completion has drawn great attention in software engineering, and several benchmarks have been introduced. However, existing repository-level code completion benchmarks usually focus on a limited number of languages (<5), which cannot evaluate the general code intelligence abilities across different languages for existing code Large Language Models (LLMs). Besides, the existing benchmarks usually report overall average scores of different languages, where the fine-grained abilities in different completion scenarios are ignored. Therefore, to facilitate the research of code LLMs in multilingual scenarios, we propose a massively multilingual repository-level code completion benchmark covering 18 programming languages (called M2RC-EVAL), and two types of fine-grained annotations (i.e., bucket-level and semantic-level) on different completion scenarios are provided, where we obtain these annotations based on the parsed abstract syntax tree. Moreover, we also curate a massively multilingual instruction corpora M2RC-INSTRUCT dataset to improve the repository-level code completion abilities of existing code LLMs. Comprehensive experimental results demonstrate the effectiveness of our M2RC-EVAL and M2RC-INSTRUCT.
Code LLMs have been widely used in various domains, including code generation, logical reasoning, and agent systems. However, open-access code LLMs mostly only release weights, lacking key features such as reproducible data pipelines and transparent training protocols, which are crucial for advancing deeper, more reliable investigations. To address the gap, we introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an “open cookbook” for the research community. Unlike most prior efforts, we release not only model weights and inference code, but also the reproducible training data, complete data processing pipeline, rigorous experimental ablation results, and detailed training protocols for open scientific research. Our work identifies the key ingredients for building a top-tier code LLM: optimized heuristic rules for data cleaning and deduplication, effective recall of code-related text corpus, and high-quality synthetic data for both annealing and supervised fine-tuning stages. By offering this level of openness, we aim to broaden access to all aspects of a top-tier code LLM, with OpenCoder serving as both a powerful model and an open foundation to accelerate research and enable reproducible advancements in code intelligence. The released resource is available at https://opencoder-llm.github.io.
We present CodeArena to emulate the complexity/diversity of real-world coding tasks, spanning 40 categories and 44 PLs. A 20B diverse synthetic instruction corpus is created by scaling instructions to help Qwen2.5-SynCoder achieve SOTA performance. Abstract: Code large language models (codeLLMs) have made significant strides in code generation. Most previous code-related benchmarks, which consist of various programming exercises along with the corresponding test cases, are used as a common measure to evaluate the performance and capabilities of code LLMs. However, the current code LLMs focus on synthesizing the correct code snippet, ignoring the alignment with human preferences, where the query should be sampled from the practical application scenarios and the model-generated responses should satisfy the human preference. To bridge the gap between the model-generated response and human preference, we present a rigorous human-curated benchmark CodeArena to emulate the complexity and diversity of real-world coding tasks, where 397 high-quality samples spanning 40 categories and 44 programming languages, carefully curated from user queries. Further, we propose a diverse synthetic instruction corpus SynCode-Instruct (nearly 20B tokens) by scaling instructions from the website to verify the effectiveness of the large-scale synthetic instruction fine-tuning, where Qwen2.5-SynCoder totally trained on synthetic instruction data can achieve top-tier performance of open-source code LLMs. The results find performance differences between execution-based benchmarks and CodeArena. Our systematic experiments of CodeArena on 40+ LLMs reveal a notable performance gap between open SOTA code LLMs (e.g. Qwen2.5-Coder) and proprietary LLMs (e.g., OpenAI o1), underscoring the importance of the human preference alignment.
Extensive research has been conducted to explore the capabilities of large language models (LLMs) in table reasoning. However, the essential task of transforming tables information into reports remains a significant challenge for industrial applications. This task is plagued by two critical issues: 1) the complexity and diversity of tables lead to suboptimal reasoning outcomes; and 2) existing table benchmarks lack the capacity to adequately assess the practical application of this task. To fill this gap, we propose the table-to-report task and construct a bilingual benchmark named T2R-bench, where the key information flow from the tables to the reports for this task. The benchmark comprises 457 industrial tables, all derived from real-world scenarios and encompassing 19 industry domains as well as four types of industrial tables. Furthermore, we propose a novel evaluation criteria to fairly measure the quality of report generation. Expeimental results show that Deepseek-R1 only achieves the best performance with 62.71% overall score, indicating that LLMs still have room for improvement on T2R-bench.
Recently, advancements in large multimodal models have led to significant strides in image comprehension capabilities. Despite these advancements, there is a lack of a robust benchmark specifically for assessing the image‐to‐web conversion proficiency of these large models. It is essential to ensure the integrity of the web elements generated, which comprise both visible and invisible categories. Previous evaluation methods (e.g., BLEU) are notably susceptible to significant alterations due to the presence of invisible elements. Furthermore, it is crucial to measure the layout information of web pages—i.e., the positional relationships between elements—which has been overlooked by prior work. To address these challenges, we have curated and aligned a benchmark of images and corresponding web codes (IW-bench). Specifically, we propose Element Accuracy, which tests the completeness of elements by parsing the Document Object Model (DOM) tree. We also introduce Layout Accuracy to analyze positional relationships by converting the DOM tree into a common subsequence. In addition, we design a five‐hop multimodal Chain‐of‐Thought prompting strategy for improved performance, consisting of: 1) SoM prompt injection, 2) inferring elements, 3) inferring layout, 4) inferring web code, and 5) reflection. Our benchmark comprises 1,200 image–code pairs with varying levels of difficulty. We have conducted extensive experiments on existing large multimodal models, providing insights into their performance and identifying areas for improvement in the image‐to‐web domain.
With the rapid advancement of large language models (LLMs), recent researchers have increasingly focused on the superior capabilities of LLMs in text/code understanding and generation to tackle text-to-SQL tasks. Traditional approaches adopt schema linking to first eliminate redundant tables and columns and prompt LLMs for SQL generation. However, they often struggle with accurately identifying corresponding tables and columns, due to discrepancies in naming conventions between natural language questions (NL) and database schemas. Besides, existing methods overlook the challenge of effectively transforming structure information from NL into SQL. To address these limitations, we introduce UCS-SQL, a novel text-to-SQL framework, uniting both content and structure pipes to bridge the gap between NL and SQL. Specifically, the content pipe focuses on identifying key content within the original content, while the structure pipe is dedicated to transforming the linguistic structure from NL to SQL. Additionally, we strategically selects few-shot examples by considering both the SQL Skeleton and Question Expression (SS-QE selection method), thus providing targeted examples for SQL generation. Experimental results on BIRD and Spider demonstrate the effectiveness of our UCS-SQL framework.
Multimodal Large Language Models (MLLMs) are measured on numerous benchmarks like image captioning, visual question answer, and reasoning. However, these benchmarks often include overly simple or uninformative samples, making it difficult to effectively distinguish the performance of different MLLMs. Additionally, evaluating models across many benchmarks creates a significant computational burden. To address these issues, we propose LIME (Less Is More for MLLM Evaluation), a refined and efficient benchmark curated using a semi-automated pipeline. This pipeline filters out uninformative samples and eliminates answer leakage by focusing on tasks that require image-based understanding. Our experiments show that LIME reduces the number of samples by 76% and evaluation time by 77%, while it can more effectively distinguish different models’ abilities. Notably, we find that traditional automatic metrics like CIDEr are insufficient for evaluating MLLMs’ captioning performance, and excluding the caption task score yields a more accurate reflection of overall model performance. All code and data are available at https://anonymous.4open.science/r/LIME-49CD
Code large language models (LLMs) enhance programming by understanding and generating code across languages, offering intelligent feedback, bug detection, and code updates through reflection, improving development efficiency and accessibility. While benchmarks (e.g. HumanEval/LiveCodeBench) evaluate code generation and real-world relevance, previous works ignores the scenario of modifying code in repositories. Considering challenges remaining in improving reflection capabilities and avoiding data contamination in dynamic benchmarks, we introduce , a challenging benchmark for evaluating code understanding and generation in multi-file repository contexts, featuring 1,888 rigorously filtered test cases across 6 programming languages to ensure diversity, correctness, and high difficulty. Further, we create , a large-scale, quality-filtered instruction-tuning dataset derived from diverse sources, used to train through a two-turn dialogue process involving code generation and error-driven repair. The leaderboard evaluates over 40 LLMs to reflect the model performance of repository-based code reflection.
Recently, Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language understanding, reasoning, and generation, prompting the recommendation community to leverage these powerful models to address fundamental challenges in traditional recommender systems, including limited comprehension of complex user intents, insufficient interaction capabilities, and inadequate recommendation interpretability. This survey presents a comprehensive synthesis of this rapidly evolving field. We consolidate existing studies into three paradigms: (i) recommender-oriented methods, which directly enhance core recommendation mechanisms; (ii) interaction-oriented methods, which conduct multi-turn conversations to elicit preferences and deliver interpretable explanations; and (iii) simulation-oriented methods, that model user-item interactions through multi-agent frameworks. Then, we dissect a four-module agent architecture: profile, memory, planning, and action. Then we review representative designs, public datasets, and evaluation protocols. Finally, we give the open challenges that impede real-world deployment, including cost-efficient inference, robust evaluation, and security.
Recently, Agentic AI has become an increasingly popular field of research. However, we argue that current practices on agent research are far from standard, rigorous scientific research, which makes it hard to conduct apples-to-apples comparisons among and against existing methods. As a result, it is still obscure how different design choices in an agent framework impact its effectiveness, and measuring progress on agent research remains very hard. In this work, we conduct a systematic empirical study on the GAIA benchmark to investigate the impact of different popular design choices within key agent components in a fair and rigorous way. To begin with, we find that the lack of a standard evaluation protocol makes previous works, even the open-sourced ones, not reproducible, and the variance between different random runs is often non-negligible. Therefore, we first introduce a more robust evaluation protocol to make comparisons more stable. Our empirical study then unveils which components and designs, as well as correlations between these designs, are the keys for building effective agents, while others are not and redundant, despite seemingly making sense. With the insights gained from our empirical study, we build and open-source OAgents, a new foundation agent framework that achieves state-of-the-art performance among open-source projects, providing a good starting point and guidelines for building effective agents. More importantly, supports various design choices for agent components in a modularized way, facilitating future scientific research on Agentic AI.
Text-to-SQL transforms the user queries from natural language to executable SQL programs, enabling non-experts to interact with complex databases. Existing prompt-based methods craft meticulous text guidelines and examples to facilitate SQL generation, but their accuracy is hindered by the large semantic gap between the texts and the low-resource SQL programs. In this work, we propose Pi-SQL, which incorporates the high-resource Python program as a pivot to bridge between the natural language query and SQL program. In particular, Pi-SQL first generates Python programs that provide fine-grained step-by-step guidelines in their code blocks or comments, and then produces an SQL program following the guidance of each Python program. The final SQL program matches the reference Python program’s query results and, through selection from candidates generated by different strategies, achieves superior execution speed, with a reward-based valid efficiency score up to 4.55 higher than the best-performing baseline. Extensive experiments demonstrate the effectiveness of Pi-SQL, which improves the execution accuracy of the best-performing baseline by up to 3.20.
Large language models (LLMs) have demonstrated impressive capabilities, but still suffer from inconsistency issues (e.g. LLMs can react differently to disturbances like rephrasing or inconsequential order change). In addition to these inconsistencies, we also observe that LLMs, while capable of solving hard problems, can paradoxically fail at easier ones. To evaluate this hard-to-easy inconsistency, we develop the ConsisEval benchmark, where each entry comprises a pair of questions with a strict order of difficulty. Furthermore, we introduce the concept of consistency score to quantitatively measure this inconsistency and analyze the potential for improvement in consistency by relative consistency score. Based on comprehensive experiments across a variety of existing models, we find: (1) GPT-4 achieves the highest consistency score of 92.2% but is still inconsistent to specific questions due to distraction by redundant information, misinterpretation of questions, etc.; (2) models with stronger capabilities typically exhibit higher consistency, but exceptions also exist; (3) hard data enhances consistency for both fine-tuning and in-context learning. Our data and code will be publicly available on GitHub.
The advent of Large Language Models (LLMs) has paved the way for complex tasks such as role-playing, which enhances user interactions by enabling models to imitate various characters. However, the closed-source nature of state-of-the-art LLMs and their general-purpose training limit role-playing optimization. In this paper, we introduce RoleLLM, a framework to benchmark, elicit, and enhance role-playing abilities in LLMs. RoleLLM comprises four stages: (1) Role Profile Construction for 100 roles; (2) Context-Based Instruction Generation (Context-Instruct) for role-specific knowledge extraction; (3) Role Prompting using GPT (RoleGPT) for speaking style imitation; and (4) Role-Conditioned Instruction Tuning (RoCIT) for fine-tuning open-source models along with role customization. By Context-Instruct and RoleGPT, we create RoleBench, the first systematic and fine-grained character-level benchmark dataset for role-playing with 168,093 samples. Moreover, RoCIT on RoleBench yields RoleLLaMA (English) and RoleGLM (Chinese), significantly enhancing role-playing abilities and even achieving comparable results with RoleGPT (using GPT-4).
Root cause analysis (RCA) in Micro-services architecture (MSA) with escalating complexity encounters complex challenges in maintaining system stability and efficiency due to fault propagation and circular dependencies among nodes. Diverse root cause analysis faults require multi-agents with diverse expertise. To mitigate the hallucination problem of large language models (LLMs), we design blockchain-inspired voting to ensure the reliability of the analysis by using a decentralized decision-making process. To avoid non-terminating loops led by common circular dependency in MSA, we objectively limit steps and standardize task processing through Agent Workflow. We propose a pioneering framework, multi-Agent Blockchain-inspired Collaboration for root cause analysis in micro-services architecture (mABC), where multiple agents based on the powerful LLMs follow Agent Workflow and collaborate in blockchain-inspired voting. Specifically, seven specialized agents derived from Agent Workflow each provide valuable insights towards root cause analysis based on their expertise and the intrinsic software knowledge of LLMs collaborating within a decentralized chain. Our experiments on the AIOps challenge dataset and a newly created Train-Ticket dataset demonstrate superior performance in identifying root causes and generating effective resolutions. The ablation study further highlights Agent Workflow, multi-agent, and blockchain-inspired voting is crucial for achieving optimal performance. mABC offers a comprehensive automated root cause analysis and resolution in micro-services architecture and significantly improves the IT Operation domain.
There has been increasing interest in exploring the capabilities of advanced large language models (LLMs) in the field of information extraction (IE), specifically focusing on tasks related to named entity recognition (NER) and relation extraction (RE). Although researchers are exploring the use of few-shot information extraction through in-context learning with LLMs, they tend to focus only on using correct or positive examples for demonstration, neglecting the potential value of incorporating incorrect or negative examples into the learning process. In this paper, we present C-ICL, a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations. This approach enhances the ability of LLMs to extract entities and relations by utilizing prompts that incorporate not only the positive samples but also the reasoning behind them. This method allows for the identification and correction of potential interface errors. Specifically, our proposed method taps into the inherent contextual information and valuable information in hard negative samples and the nearest positive neighbors to the test and then applies the in-context learning demonstrations based on LLMs. Our experiments on various datasets indicate that C-ICL outperforms previous few-shot in-context learning methods, delivering substantial enhancements in performance across a broad spectrum of related tasks. These improvements are noteworthy, showcasing the versatility of our approach in miscellaneous scenarios.
Pre-trained models have achieved remarkable success in natural language processing (NLP). However, existing pre-training methods underutilize the benefits of language understanding for generation. Inspired by the idea of Generative Adversarial Networks (GANs), we propose a GAN-style model for encoder-decoder pre-training by introducing an auxiliary discriminator, unifying the ability of language understanding and generation in a single model. Our model, named as GanLM, is trained with two pre-training objectives: replaced token detection and replaced token denoising. Specifically, given masked source sentences, the generator outputs the target distribution and the discriminator predicts whether the target sampled tokens from distribution are incorrect. The target sentence is replaced with misclassified tokens to construct noisy previous context, which is used to generate the gold sentence. In general, both tasks improve the ability of language understanding and generation by selectively using the denoising data. Extensive experiments in language generation benchmarks show that GanLM with the powerful language understanding capability outperforms various strong pre-trained language models (PLMs) and achieves state-of-the-art performance.