Jian Jornbowrl Wang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Do Code Semantics Help? A Comprehensive Study on Execution Trace-Based Information for Code Large Language Models
Jian Jornbowrl Wang | Xiaofei Xie | Qiang Hu | Shangqing Liu | Yi Li
Findings of the Association for Computational Linguistics: EMNLP 2025

Code Large Language Models (Code LLMs) have opened a new era in programming with their impressive capabilities. However, recent research has revealed critical limitations in their ability to reason about runtime behavior and understand the actual functionality of programs, which poses significant challenges for their post-training and practical deployment. Specifically, Code LLMs encounter two principal issues: (1) a lack of proficiency in reasoning about program execution behavior, as they struggle to interpret what programs actually do during runtime, and (2) inconsistent and fragmented representation of semantic information, such as execution traces, across existing methods, which hinders their ability to generalize and reason effectively. These challenges underscore the necessity for more systematic approaches to enhance the reasoning capabilities of Code LLMs. To address these issues, we introduce a generic framework to support integrating semantic information (e.g., execution trace) to code task-relevant prompts, and conduct a comprehensive study to explore the role of semantic information in enhancing the reasoning ability of Code LLMs accordingly. Specifically, we focus on investigating the usefulness of trace-based semantic information in boosting supervised fine-tuning(SFT) and post-phase inference of Code LLMs. The experimental results surprisingly disagree with previous works and demonstrate that semantic information has limited usefulness for SFT and test time scaling of Code LLM.