Jialu Qi

Also published as: 佳璐


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
CCL23-Eval 任务5总结报告:跨领域句子级别中文省略消解(Overview of CCL23-Eval Task 5: Sentence Level Multi-domain Chinese Ellipsis Resolution)
Wei Li (李炜) | Qiuyan Shao (邵艳秋) | Jialu Qi (祁佳璐)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“省略是一种会出现在包括中文在内的各种语言中的一种语言现象。虽然人类一般能够正确理解带有省略的文本,但是其对机器在句法、语义等方面的理解却会造成影响。因此自动恢复省略成分对文本自动分析理解具有重要意义。本任务提出一个面向应用的省略恢复任务,旨在恢复在句子句法结构中占据有效位置同时在句子中扮演语义成分的被省略内容。本任务将省略恢复任务划分成两个子任务:省略位置探测和省略内容生成,并分别描述在两个子任务中取得较好结果的基线方法。此外,为了推进对大语言模型的研究,本文还尝试使用场景学习的方法使用ChatGPT来完成本任务,并进行了相关分析。”