This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JesúsVilares
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We developed a zero-shot pipeline that leverages an Large Language Model to generate functional code capable of extracting the relevant information from tabular data based on an input question. Our approach consists of a modular pipeline where the main code generator module is supported by additional components that identify the most relevant columns and analyze their data types to improve extraction accuracy. In the event that the generated code fails, an iterative refinement process is triggered, incorporating the error feedback into a new generation prompt to enhance robustness. Our results show that zero-shot code generation is a valid approach for Tabular QA, achieving rank 33 of 53 in the test phase despite the lack of task-specific fine-tuning.
Although the roguelike video game genre has a large community of fans (both players and developers) and the graphic aspect of these games is usually given little relevance (ASCII-based graphics are not rare even today), their accessibility for blind players and other visually-impaired users remains a pending issue. In this document, we describe an initiative for the development of roguelikes adapted to visually-impaired players by using Natural Language Processing techniques, together with the first completed games resulting from it. These games were developed as Bachelor’s and Master’s theses. Our approach consists in integrating a multilingual module that, apart from the classic ASCII-based graphical interface, automatically generates text descriptions of what is happening within the game. The visually-impaired user can then read such descriptions by means of a screen reader. In these projects we seek expressivity and variety in the descriptions, so we can offer the users a fun roguelike experience that does not sacrifice any of the key characteristics that define the genre. Moreover, we intend to make these projects easy to extend to other languages, thus avoiding costly and complex solutions. KEYWORDS: Natural Language Generation, roguelikes, visually-impaired users