Jessica Foo


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
LionGuard: A Contextualized Moderation Classifier to Tackle Localized Unsafe Content
Jessica Foo | Shaun Khoo
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track

As large language models (LLMs) become increasingly prevalent in a wide variety of applications, concerns about the safety of their outputs have become more significant. Most efforts at safety-tuning or moderation today take on a predominantly Western-centric view of safety, especially for toxic, hateful, or violent speech. In this paper, we describe LionGuard, a Singapore-contextualized moderation classifier that can serve as guardrails against unsafe LLM usage. When assessed on Singlish data, LionGuard outperforms existing widely-used moderation APIs, which are not finetuned for the Singapore context, by at least 14% (binary) and up to 51% (multi-label). Our work highlights the benefits of localization for moderation classifiers and presents a practical and scalable approach for low-resource languages, particularly English-based creoles.