Jeremie Boudreau


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Evaluating the Impact of Sub-word Information and Cross-lingual Word Embeddings on Mi’kmaq Language Modelling
Jeremie Boudreau | Akankshya Patra | Ashima Suvarna | Paul Cook
Proceedings of the Twelfth Language Resources and Evaluation Conference

Mi’kmaq is an Indigenous language spoken primarily in Eastern Canada. It is polysynthetic and low-resource. In this paper we consider a range of n-gram and RNN language models for Mi’kmaq. We find that an RNN language model, initialized with pre-trained fastText embeddings, performs best, highlighting the importance of sub-word information for Mi’kmaq language modelling. We further consider approaches to language modelling that incorporate cross-lingual word embeddings, but do not see improvements with these models. Finally we consider language models that operate over segmentations produced by SentencePiece — which include sub-word units as tokens — as opposed to word-level models. We see improvements for this approach over word-level language models, again indicating that sub-word modelling is important for Mi’kmaq language modelling.