This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JensForster
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper introduces the RWTH-PHOENIX-Weather 2014, a video-based, large vocabulary, German sign language corpus which has been extended over the last two years, tripling the size of the original corpus. The corpus contains weather forecasts simultaneously interpreted into sign language which were recorded from German public TV and manually annotated using glosses on the sentence level and semi-automatically transcribed spoken German extracted from the videos using the open-source speech recognition system RASR. Spatial annotations of the signers’ hands as well as shape and orientation annotations of the dominant hand have been added for more than 40k respectively 10k video frames creating one of the largest corpora allowing for quantitative evaluation of object tracking algorithms. Further, over 2k signs have been annotated using the SignWriting annotation system, focusing on the shape, orientation, movement as well as spatial contacts of both hands. Finally, extended recognition and translation setups are defined, and baseline results are presented.
This paper introduces the RWTH-PHOENIX-Weather corpus, a video-based, large vocabulary corpus of German Sign Language suitable for statistical sign language recognition and translation. In contrastto most available sign language data collections, the RWTH-PHOENIX-Weather corpus has not been recorded for linguistic research but for the use in statistical pattern recognition. The corpus contains weather forecasts recorded from German public TV which are manually annotated using glosses distinguishing sign variants, and time boundaries have been marked on the sentence and the gloss level. Further, the spoken German weather forecast has been transcribed in a semi-automatic fashion using a state-of-the-art automatic speech recognition system. Moreover, an additional translation of the glosses into spoken German has been created to capture allowable translation variability. In addition to the corpus, experimental baseline results for hand and head tracking, statistical sign language recognition and translation are presented.