Jen Wilson


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
RainCityNLP at BioLaySumm2025: Extract then Summarize at Home
Jen Wilson | Michael Pollack | Rachel Edwards | Avery Bellamy | Helen Salgi
Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks)

As part of the BioLaySumm shared task at ACL 2025, we developed a summarization tool designed to translate complex biomedical texts into layperson-friendly summaries. Our goal was to enhance accessibility and comprehension for patients and others without specialized medical knowledge. The system employed an extractive-then-abstractive summarization pipeline. For the abstractive component, we experimented with two models: Pegasus-XSum and a Falcons.ai model pre-trained on medical data. Final outputs were evaluated using the official BioLaySumm 2025 metrics. To promote practical accessibility, we completed all experimentation on consumer-grade hardware, demonstrating the feasibility of our approach in low-resource settings.