Jeffery Kinnison


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Auto-Sizing the Transformer Network: Improving Speed, Efficiency, and Performance for Low-Resource Machine Translation
Kenton Murray | Jeffery Kinnison | Toan Q. Nguyen | Walter Scheirer | David Chiang
Proceedings of the 3rd Workshop on Neural Generation and Translation

Neural sequence-to-sequence models, particularly the Transformer, are the state of the art in machine translation. Yet these neural networks are very sensitive to architecture and hyperparameter settings. Optimizing these settings by grid or random search is computationally expensive because it requires many training runs. In this paper, we incorporate architecture search into a single training run through auto-sizing, which uses regularization to delete neurons in a network over the course of training. On very low-resource language pairs, we show that auto-sizing can improve BLEU scores by up to 3.9 points while removing one-third of the parameters from the model.