Jędrzej Warczyński
Fixing paper assignments
- Please select all papers that belong to the same person.
- Indicate below which author they should be assigned to.
TODO: "submit" and "cancel" buttons here
2024
Leveraging Large Language Models for Building Interpretable Rule-Based Data-to-Text Systems
Jędrzej Warczyński
|
Mateusz Lango
|
Ondrej Dusek
Proceedings of the 17th International Natural Language Generation Conference
We introduce a simple approach that uses a large language model (LLM) to automatically implement a fully interpretable rule-based data-to-text system in pure Python. Experimental evaluation on the WebNLG dataset showed that such a constructed system produces text of better quality (according to the BLEU and BLEURT metrics) than the same LLM prompted to directly produce outputs, and produces fewer hallucinations than a BART language model fine-tuned on the same data. Furthermore, at runtime, the approach generates text in a fraction of the processing time required by neural approaches, using only a single CPU.