Jędrzej Jamnicki


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Leveraging Probabilistic Graph Models in Nested Named Entity Recognition for Polish
Jędrzej Jamnicki
Proceedings of the 8th Student Research Workshop associated with the International Conference Recent Advances in Natural Language Processing

This paper presents ongoing work on leveraging probabilistic graph models, specifically conditional random fields and hidden Markov models, in nested named entity recognition for the Polish language. NER is a crucial task in natural language processing that involves identifying and classifying named entities in text documents. Nested NER deals with recognizing hierarchical structures of entities that overlap with one another, presenting additional challenges. The paper discusses the methodologies and approaches used in nested NER, focusing on CRF and HMM. Related works and their contributions are reviewed, and experiments using the KPWr dataset are conducted, particularly with the BiLSTM-CRF model and Word2Vec and HerBERT embeddings. The results show promise in addressing nested NER for Polish, but further research is needed to develop robust and accurate models for this complex task.
Search
Co-authors
    Venues
    Fix data