This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Jean-BaptisteTanguy
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Nous présentons dans cet article notre contribution aux 3 tâches de la campagne d’évaluation du défi Fouille de Texte 2021. Dans la tâche d’identification de de profil clinique (tâche 1) nous présentons une méthode de recherche d’information basé sur un index dérivé du MeSH. Pour la tâche de notation automatique à partir d’une correction (tâche 2), nous avons expérimenté une méthode de similarité de vecteurs de chaînes de caractères. Pour la tâche de notation à partir de copies déjà notées (tâche 3) nous avons entraîné un réseau de neurones LSTM.
We present our contributions for the 2020 FinTOC Shared Tasks: Title Detection and Table of Contents Extraction. For the Structure Extraction task, we propose an approach that combines information from multiple sources: the table of contents, the wording of the document, and lexical domain knowledge. For the title detection task, we compare surface features to character-based features on various training configurations. We show that title detection results are very sensitive to the kind of training dataset used.
Pour comparer deux sorties de logiciels d’OCR, le Character Error Rate (ou, CER) est fréquemment utilisé. Moyennant l’existence d’une transcription de référence de qualité pour certains documents du corpus, le CER calcule le taux d’erreurs de ces pièces et permet ensuite de sélectionner le logiciel d’OCR le plus adapté. Toutefois, ces transcriptions sont très coûteuses à produire et peuvent freiner certaines études, même prospectives. Nous explorons l’exploitation des modèles de langue en agrégeant selon différentes méthodes les probabilités offertes par ceux-ci pour estimer la qualité d’une sortie d’OCR. L’indice de corrélation Pearson est ici utilisé pour comprendre dans quelle mesure ces estimations issues de modèles de langue co-varient avec le CER, mesure de référence.