Jaya Shree


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Deep Natural Language Understanding of News Text
Jaya Shree | Emily Liu | Andrew Gordon | Jerry Hobbs
Proceedings of the First Workshop on Narrative Understanding

Early proposals for the deep understanding of natural language text advocated an approach of “interpretation as abduction,” where the meaning of a text was derived as an explanation that logically entailed the input words, given a knowledge base of lexical and commonsense axioms. While most subsequent NLP research has instead pursued statistical and data-driven methods, the approach of interpretation as abduction has seen steady advancements in both theory and software implementations. In this paper, we summarize advances in deriving the logical form of the text, encoding commonsense knowledge, and technologies for scalable abductive reasoning. We then explore the application of these advancements to the deep understanding of a paragraph of news text, where the subtle meaning of words and phrases are resolved by backward chaining on a knowledge base of 80 hand-authored axioms.