Jasy Liew Suet Yan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
GenABSA-Vec: Generative Aspect-Based Sentiment Feature Vectorization for Document-Level Sentiment Classification
Liu Minkang | Jasy Liew Suet Yan
Proceedings of the 22nd Annual Workshop of the Australasian Language Technology Association

Currently, document-level sentiment classification focuses on extracting text features directly using a deep neural network and representing the document through a high-dimensional vector. Such sentiment classifiers that directly accept text as input may not be able to capture more fine-grained sentiment representations based on different aspects in a review, which could be informative for document-level sentiment classification. We propose a method to construct a GenABSA feature vector containing five aspect-sentiment scores to represent each review document. We first generate an aspect-based sentiment analysis (ABSA) quadruple by finetuning the T5 pre-trained language model. The aspect term from each quadruple is then scored for sentiment using our sentiment lexicon fusion approach, SentLex-Fusion. For each document, we then aggregate the sentiment score belonging to the same aspect to derive the aspect-sentiment feature vector, which is subsequently used as input to train a document-level sentiment classifier. Based on a Yelp restaurant review corpus labeled with sentiment polarity containing 2040 documents, the sentiment classifier trained with ABSA features aggregated using geometric mean achieved the best performance compared to the baselines.