Jason J Corso


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Transparent and Coherent Procedural Mistake Detection
Shane Storks | Itamar Bar-Yossef | Yayuan Li | Zheyuan Zhang | Jason J Corso | Joyce Chai
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Procedural mistake detection (PMD) is a challenging problem of classifying whether a human user (observed through egocentric video) has successfully executed a task (specified by a procedural text). Despite significant recent efforts, machine performance in the wild remains nonviable, and the reasoning processes underlying this performance are opaque. As such, we extend PMD to require generating visual self-dialog rationales to inform decisions. Given the impressive, mature image understanding capabilities observed in recent vision-and-language models (VLMs), we curate a suitable benchmark dataset for PMD based on individual frames. As our reformulation enables unprecedented transparency, we leverage a natural language inference (NLI) model to formulate two automated metrics for the coherence of generated rationales. We establish baselines for this reframed task, showing that VLMs struggle off-the-shelf, but with some trade-offs, their accuracy, coherence, and efficiency can be improved by incorporating these metrics into common inference and fine-tuning methods. Lastly, our multi-faceted metrics visualize common outcomes, highlighting areas for further improvement.