This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JánosCsirik
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The Szeged Corpus is the largest manually annotated database containing the possible morphological analyses and lemmas for each word form. In this work, we present its latest version, Szeged Corpus 2.5, in which the new harmonized morphological coding system of Hungarian has been employed and, on the other hand, the majority of misspelled words have been corrected and tagged with the proper morphological code. New morphological codes are introduced for participles, causative / modal / frequentative verbs, adverbial pronouns and punctuation marks, moreover, the distinction between common and proper nouns is eliminated. We also report some statistical data on the frequency of the new morphological codes. The new version of the corpus made it possible to train magyarlanc, a data-driven POS-tagger of Hungarian on a dataset with the new harmonized codes. According to the results, magyarlanc is able to achieve a state-of-the-art accuracy score on the 2.5 version as well.
Herein, we present the process of developing the first Hungarian Dependency TreeBank. First, short references are made to dependency grammars we considered important in the development of our Treebank. Second, mention is made of existing dependency corpora for other languages. Third, we present the steps of converting the Szeged Treebank into dependency-tree format: from the originally phrase-structured treebank, we produced dependency trees by automatic conversion, checked and corrected them thereby creating the first manually annotated dependency corpus for Hungarian. We also go into detail about the two major sets of problems, i.e. coordination and predicative nouns and adjectives. Fourth, we give statistics on the treebank: by now, we have completed the annotation of business news, newspaper articles, legal texts and texts in informatics, at the same time, we are planning to convert the entire corpus into dependency tree format. Finally, we give some hints on the applicability of the system: the present database may be utilized ― among others ― in information extraction and machine translation as well.
To create the first Hungarian WSD corpus, 39 suitable word form samples were selected for the purpose of word sense disambiguation. Among others, selection criteria required the given word form to be frequent in Hungarian language usage, and to have more than one sense considered frequent in usage. HNC and its Heti Világgazdaság subcorpus provided the basis for corpus text selection. This way, each sample has a relevant context (whole article), and information on the lemma, POS-tagging and automatic tokenization is also available. When planning the corpus, 300-500 samples of each word form were to be annotated. This size makes it possible that the subcorpora prepared for the individual word forms can be compared to data available for other languages. However, the finalized database also contains unannotated samples and samples with single annotation, which were annotated only by one of the linguists. The corpus follows the ACLs SensEval/SemEval WSD tasks format. The first version of the corpus was developed within the scope of the project titled The construction Hungarian WordNet Ontology and its application in Information Extraction Systems (Hatvani et al., 2007). The corpus for research and educational purposes is available and can be downloaded free of charge.
A highly accurate Named Entity (NE) corpus for Hungarian that is publicly available for research purposes is introduced in the paper, along with its main properties. The results of experiments that apply various Machine Learning models and classifier combination schemes are also presented to serve as a benchmark for further research based on the corpus. The data is a segment of the Szeged Corpus (Csendes et al., 2004), consisting of short business news articles collected from MTI (Hungarian News Agency, www.mti.hu). The annotation procedure was carried out paying special attention to annotation accuracy. The corpus went through a parallel annotation phase done by two annotators, resulting in a tagging with inter-annotator agreement rate of 99.89%. Controversial taggings were collected and discussed by the two annotators and a linguist with several years of experience in corpus annotation. These examples were tagged following the decision they made together, and finally all entities that had suspicious or dubious annotations were collected and checked for consistency. We consider the result of this correcting process virtually be free of errors. Our best performing Named Entity Recognizer (NER) model attained an accuracy of 92.86% F measure on the corpus.