Janis Zuters


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Frustration Level Annotation in Latvian Tweets with Non-Lexical Means of Expression
Viktorija Leonova | Janis Zuters
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

We present a neural-network-driven model for annotating frustration intensity in customer support tweets, based on representing tweet texts using a bag-of-words encoding after processing with subword segmentation together with non-lexical features. The model was evaluated on tweets in English and Latvian languages, focusing on aspects beyond the pure bag-of-words representations used in previous research. The experimental results show that the model can be successfully applied for texts in a non-English language, and that adding non-lexical features to tweet representations significantly improves performance, while subword segmentation has a moderate but positive effect on model accuracy. Our code and training data are publicly available.