Jan Kels


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
HHUplexity at Text Complexity DE Challenge 2022
David Arps | Jan Kels | Florian Krämer | Yunus Renz | Regina Stodden | Wiebke Petersen
Proceedings of the GermEval 2022 Workshop on Text Complexity Assessment of German Text

In this paper, we describe our submission to the ‘Text Complexity DE Challenge 2022’ shared task on predicting the complexity of German sentences. We compare performance of different feature-based regression architectures and transformer language models. Our best candidate is a fine-tuned German Distilbert model that ignores linguistic features of the sentences. Our model ranks 7th place in the shared task.