Jan Heinrich Merker


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
DeepCT-enhanced Lexical Argument Retrieval
Alexander Bondarenko | Maik Fröbe | Danik Hollatz | Jan Heinrich Merker | Matthias Hagen
Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)

The recent Touché lab’s argument retrieval task focuses on controversial topics like ‘Should bottled water be banned?’ and asks to retrieve relevant pro/con arguments. Interestingly, the most effective systems submitted to that task still are based on lexical retrieval models like BM25. In other domains, neural retrievers that capture semantics are more effective than lexical baselines. To add more “semantics” to argument retrieval, we propose to combine lexical models with DeepCT-based document term weights. Our evaluation shows that our approach is more effective than all the systems submitted to the Touché lab while being on par with modern neural re-rankers that themselves are computationally more expensive.