This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JamesBruno
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We investigate the extent to which verb alternation classes, as described by Levin (1993), are encoded in the embeddings of Large Pre-trained Language Models (PLMs) such as BERT, RoBERTa, ELECTRA, and DeBERTa using selectively constructed diagnostic classifiers for word and sentence-level prediction tasks. We follow and expand upon the experiments of Kann et al. (2019), which aim to probe whether static embeddings encode frame-selectional properties of verbs. At both the word and sentence level, we find that contextual embeddings from PLMs not only outperform non-contextual embeddings, but achieve astonishingly high accuracies on tasks across most alternation classes. Additionally, we find evidence that the middle-to-upper layers of PLMs achieve better performance on average than the lower layers across all probing tasks.
We present a tool that provides automated feedback to students studying Spanish writing. The feedback is given for four categories: topic development, coherence, writing conventions, and essay organization. The tool is made freely available via a Google Docs add-on. A small user study with third-level students in Mexico shows that students found the tool generally helpful and that most of them plan to continue using it as they work to improve their writing skills.
Automated scoring engines are usually trained and evaluated against human scores and compared to the benchmark of human-human agreement. In this paper we compare the performance of an automated speech scoring engine using two corpora: a corpus of almost 700,000 randomly sampled spoken responses with scores assigned by one or two raters during operational scoring, and a corpus of 16,500 exemplar responses with scores reviewed by multiple expert raters. We show that the choice of corpus used for model evaluation has a major effect on estimates of system performance with r varying between 0.64 and 0.80. Surprisingly, this is not the case for the choice of corpus for model training: when the training corpus is sufficiently large, the systems trained on different corpora showed almost identical performance when evaluated on the same corpus. We show that this effect is consistent across several learning algorithms. We conclude that evaluating the model on a corpus of exemplar responses if one is available provides additional evidence about system validity; at the same time, investing effort into creating a corpus of exemplar responses for model training is unlikely to lead to a substantial gain in model performance.
The availability of the Rhetorical Structure Theory (RST) Discourse Treebank has spurred substantial research into discourse analysis of written texts; however, limited research has been conducted to date on RST annotation and parsing of spoken language, in particular, non-native spontaneous speech. Considering that the measurement of discourse coherence is typically a key metric in human scoring rubrics for assessments of spoken language, we initiated a research effort to obtain RST annotations of a large number of non-native spoken responses from a standardized assessment of academic English proficiency. The resulting inter-annotator kappa agreements on the three different levels of Span, Nuclearity, and Relation are 0.848, 0.766, and 0.653, respectively. Furthermore, a set of features was explored to evaluate the discourse structure of non-native spontaneous speech based on these annotations; the highest performing feature resulted in a correlation of 0.612 with scores of discourse coherence provided by expert human raters.