Jakob Schuster


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Nut-cracking Sledgehammers: Prioritizing Target Language Data over Bigger Language Models for Cross-Lingual Metaphor Detection
Jakob Schuster | Katja Markert
Proceedings of the 2023 CLASP Conference on Learning with Small Data (LSD)

In this work, we investigate cross-lingual methods for metaphor detection of adjective-noun phrases in three languages (English, German and Polish). We explore the potential of minimalistic neural networks supported by static embeddings as a light-weight alternative for large transformer-based language models. We measure performance in zero-shot experiments without access to annotated target language data and aim to find low-resource improvements for them by mainly focusing on a k-shot paradigm. Even by incorporating a small number of phrases from the target language, the gap in accuracy between our small networks and large transformer architectures can be bridged. Lastly, we suggest that the k-shot paradigm can even be applied to models using machine translation of training data.