This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JakeLever
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Biomedical entity linking models disambiguate mentions in text by matching them with unique biomedical concepts. This problem is commonly addressed using a two-stage pipeline comprising an inexpensive candidate generator, which filters a subset of suitable entities for a mention, and a costly but precise reranker that provides the final matching between the mention and the concept. With the goal of applying two-stage entity linking at scale, we explore the construction of effective cross-encoder reranker models, capable of scoring multiple mention-entity pairs simultaneously. Through experiments on four entity linking datasets, we show that our cross-encoder models provide between 2.7 to 36.97 times faster training speeds and 3.42 to 26.47 times faster inference speeds than a base cross-encoder model capable of scoring only one entity, while achieving similar accuracy (differences between -3.42% to 2.76% Acc@1).
Radiology report generation (RRG) requires advanced medical image analysis, effective temporal reasoning, and accurate text generation. While multimodal large language models (MLLMs) align with pre-trained vision encoders to enhance visual-language understanding, most existing methods rely on single-image analysis or rule-based heuristics to process multiple images, failing to fully leverage temporal information in multi-modal medical datasets. In this paper, we introduce **Libra**, a temporal-aware MLLM tailored for chest X-ray report generation. Libra combines a radiology-specific image encoder with a novel Temporal Alignment Connector (**TAC**), designed to accurately capture and integrate temporal differences between paired current and prior images. Extensive experiments on the MIMIC-CXR dataset demonstrate that Libra establishes a new state-of-the-art benchmark among similarly scaled MLLMs, setting new standards in both clinical relevance and lexical accuracy. All source code and data are publicly available at: https://github.com/X-iZhang/Libra.
Knowledge editing has emerged as an effective approach for updating large language models (LLMs) by modifying their internal knowledge. However, their application to the biomedical domain faces unique challenges due to the long-tailed distribution of biomedical knowledge, where rare and infrequent information is prevalent. In this paper, we conduct the first comprehensive study to investigate the effectiveness of knowledge editing methods for editing long-tail biomedical knowledge. Our results indicate that, while existing editing methods can enhance LLMs’ performance on long-tail biomedical knowledge, their performance on long-tail knowledge remains inferior to that on high-frequency popular knowledge, even after editing. Our further analysis reveals that long-tail biomedical knowledge contains a significant amount of one-to-many knowledge, where one subject and relation link to multiple objects. This high prevalence of one-to-many knowledge limits the effectiveness of knowledge editing in improving LLMs’ understanding of long-tail biomedical knowledge, highlighting the need for tailored strategies to bridge this performance gap.
This paper introduces a radiology-focused visual language model designed to generate radiology reports from chest X-rays. Building on previous findings that large language models can acquire multimodal capabilities when aligned with pretrained vision encoders, we demonstrate similar potential with chest X-ray images. The model combines an image encoder (CLIP) with a fine-tuned large language model (LLM) based on the Vicuna-7B architecture. The training process involves a two-stage approach: initial alignment of chest X-ray features with the LLM, followed by fine-tuning for radiology report generation. The study highlights the importance of generating both FINDINGS and IMPRESSIONS sections in radiology reports and evaluates the model’s performance using various metrics, achieving notable accuracy in generating high-quality medical reports. The research also addresses the need for domain-specific fine-tuning to capture the intricate details necessary for accurate medical interpretations and reports.
This paper presents the UoG Siephers team participation at the Discharge Me! Shared Task on Streamlining Discharge Documentation. For our participation, we investigate appropriately selecting and encoding specific sections of Electronic Health Records (EHR) as input data for sequence-to-sequence models, to generate the discharge instructions and brief hospital course sections of a patient’s EHR. We found that, despite the large volume of disparate information that is often available in EHRs, selectively choosing an appropriate EHR section for training and prompting sequence-to-sequence models resulted in improved generative quality. In particular, we found that using only the history of present illness section of an EHR as input often led to better performance than using multiple EHR sections.
Relation extraction methods are essential for creating robust text mining tools to help researchers find useful knowledge in the vast published literature. Easy-to-use and generalizable methods are needed to encourage an ecosystem in which researchers can easily use shared resources and build upon each others’ methods. We present the Kindred Python package for relation extraction. It builds upon methods from the most successful tools in the recent BioNLP Shared Task to predict high-quality predictions with low computational cost. It also integrates with PubAnnotation, PubTator, and BioNLP Shared Task data in order to allow easy development and application of relation extraction models.