Jaemin Kim


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
A Two-Step Approach for Data-Efficient French Pronunciation Learning
Hoyeon Lee | Hyeeun Jang | Jonghwan Kim | Jaemin Kim
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Recent studies have addressed intricate phonological phenomena in French, relying on either extensive linguistic knowledge or a significant amount of sentence-level pronunciation data. However, creating such resources is expensive and non-trivial. To this end, we propose a novel two-step approach that encompasses two pronunciation tasks: grapheme-to-phoneme and post-lexical processing. We then investigate the efficacy of the proposed approach with a notably limited amount of sentence-level pronunciation data. Our findings demonstrate that the proposed two-step approach effectively mitigates the lack of extensive labeled data, and serves as a feasible solution for addressing French phonological phenomena even under resource-constrained environments.

pdf bib
SentiCSE: A Sentiment-aware Contrastive Sentence Embedding Framework with Sentiment-guided Textual Similarity
Jaemin Kim | Yohan Na | Kangmin Kim | Sang-Rak Lee | Dong-Kyu Chae
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Recently, sentiment-aware pre-trained language models (PLMs) demonstrate impressive results in downstream sentiment analysis tasks. However, they neglect to evaluate the quality of their constructed sentiment representations; they just focus on improving the fine-tuning performance, which overshadows the representation quality. We argue that without guaranteeing the representation quality, their downstream performance can be highly dependent on the supervision of the fine-tuning data rather than representation quality. This problem would make them difficult to foray into other sentiment-related domains, especially where labeled data is scarce. We first propose Sentiment-guided Textual Similarity (SgTS), a novel metric for evaluating the quality of sentiment representations, which is designed based on the degree of equivalence in sentiment polarity between two sentences. We then propose SentiCSE, a novel Sentiment-aware Contrastive Sentence Embedding framework for constructing sentiment representations via combined word-level and sentence-level objectives, whose quality is guaranteed by SgTS. Qualitative and quantitative comparison with the previous sentiment-aware PLMs shows the superiority of our work. Our code is available at: https://github.com/nayohan/SentiCSE