Jae Ro


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Scaling Language Model Size in Cross-Device Federated Learning
Jae Ro | Theresa Breiner | Lara McConnaughey | Mingqing Chen | Ananda Suresh | Shankar Kumar | Rajiv Mathews
Proceedings of the First Workshop on Federated Learning for Natural Language Processing (FL4NLP 2022)

Most studies in cross-device federated learning focus on small models, due to the server-client communication and on-device computation bottlenecks. In this work, we leverage various techniques for mitigating these bottlenecks to train larger language models in cross-device federated learning. With systematic applications of partial model training, quantization, efficient transfer learning, and communication-efficient optimizers, we are able to train a 21M parameter Transformer that achieves the same perplexity as that of a similarly sized LSTM with ∼10× smaller client-to-server communication cost and 11% lower perplexity than smaller LSTMs commonly studied in literature.

2020

pdf bib
Semi-supervised URL Segmentation with Recurrent Neural Networks Pre-trained on Knowledge Graph Entities
Hao Zhang | Jae Ro | Richard Sproat
Proceedings of the 28th International Conference on Computational Linguistics

Breaking domain names such as openresearch into component words open and research is important for applications like Text-to-Speech synthesis and web search. We link this problem to the classic problem of Chinese word segmentation and show the effectiveness of a tagging model based on Recurrent Neural Networks (RNNs) using characters as input. To compensate for the lack of training data, we propose a pre-training method on concatenated entity names in a large knowledge database. Pre-training improves the model by 33% and brings the sequence accuracy to 85%.