This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JacquesFarré
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Among the linguistic resources formalizing a language, morphological rules are among those that can be achieved in a reasonable time. Nevertheless, since the construction of such resource can require linguistic expertise, morphological rules are still lacking for many languages. The automatized acquisition of morphology is thus an open topic of interest within the NLP field. We present an approach that allows to automatically compute, from raw corpora, a data-representative description of the concatenative mechanisms of a morphology. Our approach takes advantage of phenomena that are observable for all languages using morphological inflection and derivation but are more easy to exploit when dealing with concatenative mechanisms. Since it has been developed toward the objective of being used on as many languages as possible, applying this approach to a varied set of languages needs very few expert work. The results obtained for our first participation in the 2010 edition of MorphoChallenge have confirmed both the practical interest and the potential of the method.
La couverture d’un analyseur syntaxique dépend avant tout de la grammaire et du lexique sur lequel il repose. Le développement d’un lexique complet et précis est une tâche ardue et de longue haleine, surtout lorsque le lexique atteint un certain niveau de qualité et de couverture. Dans cet article, nous présentons un processus capable de détecter automatiquement les entrées manquantes ou incomplètes d’un lexique, et de suggérer des corrections pour ces entrées. La détection se réalise au moyen de deux techniques reposant soit sur un modèle statistique, soit sur les informations fournies par un étiqueteur syntaxique. Les hypothèses de corrections pour les entrées lexicales détectées sont générées en étudiant les modifications qui permettent d’améliorer le taux d’analyse des phrases dans lesquelles ces entrées apparaissent. Le processus global met en oeuvre plusieurs techniques utilisant divers outils tels que des étiqueteurs et des analyseurs syntaxiques ou des classifieurs d’entropie. Son application au Lefff , un lexique morphologique et syntaxique à large couverture du français, nous a déjà permis de réaliser des améliorations notables.
Le succès de l’analyse syntaxique d’une phrase dépend de la qualité de la grammaire sous-jacente mais aussi de celle du lexique utilisé. Une première étape dans l’amélioration des lexiques consiste à identifier les entrées lexicales potentiellement erronées, par exemple en utilisant des techniques de fouilles d’erreurs sur corpus (Sagot & Villemonte de La Clergerie, 2006). Nous explorons ici l’étape suivante : la suggestion de corrections pour les entrées identifiées. Cet objectif est atteint au travers de réanalyses des phrases rejetées à l’étape précédente, après modification des informations portées par les entrées suspectées. Un calcul statistique sur les nouveaux résultats permet ensuite de mettre en valeur les corrections les plus pertinentes.