This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JacobDevasier
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Frame-semantic parsing is a critical task in natural language understanding, yet the ability of large language models (LLMs) to extract frame-semantic arguments remains underexplored. This paper presents a comprehensive evaluation of LLMs on frame-semantic argument identification, analyzing the impact of input representation formats, model architectures, and generalization to unseen and out-of-domain samples. Our experiments, spanning models from 0.5B to 72B parameters, reveal that JSON-based representations significantly enhance performance, and while larger models generally perform better, smaller models can achieve competitive results through fine-tuning. We also introduce a novel approach to frame identification leveraging predicted frame elements, achieving state-of-the-art performance on ambiguous targets. Despite strong generalization capabilities, our analysis finds that LLMs still struggle with out-of-domain data.
We propose a novel paradigm for automatic fact-checking that leverages frame semantics to enhance the structured understanding of claims and guide the process of fact-checking them. To support this, we introduce a pilot dataset of real-world claims extracted from PolitiFact, specifically annotated for large-scale structured data. This dataset underpins two case studies: the first investigates voting-related claims using the Vote semantic frame, while the second explores various semantic frames based on data sources from the Organisation for Economic Co-operation and Development (OECD). Our findings demonstrate the effectiveness of frame semantics in improving evidence retrieval and explainability for fact-checking. Finally, we conducted a survey of frames evoked in fact-checked claims, identifying high-impact frames to guide future work in this direction.
We introduce ClaimCheck, an efficient fact-checking system that verifies textual claims using smaller, open-source large language models. ClaimCheck integrates two fact-checking strategies, claim-matching and novel claim processing. Claim-matching uses related fact-checks from trusted organizations to fact-check a claim. Novel claim processing breaks down fact-checking into manageable subtasks—generating targeted questions, retrieving Web evidence, extracting answers, and synthesizing verdicts. Evaluation on the AVeriTeC benchmark demonstrates 62.6% verdict prediction accuracy, with claim-matching providing a 2.8% improvement. ClaimCheck approaches the performance of state-of-the-art systems while requiring significantly fewer computational resources, demonstrating the effectiveness of using small language models for fact-checking tasks. Furthermore, our code is publicly available to help make automated fact-checking more accessible.
We present novel advancements in frame-semantic parsing, specifically focusing on target identification and frame identification. Our target identification model employs a novel prefix tree modification to enable robust support for multi-word lexical units, resulting in a coverage of 99.4% of the targets in the FrameNet 1.7 fulltext annotations. It utilizes a RoBERTa-based filter to achieve an F1 score of 0.775, surpassing the previous state-of-the-art solution by +0.012. For frame identification, we introduce a modification to the standard multiple-choice classification paradigm by incorporating additional negative frames for targets with limited candidate frames, resulting in a +0.014 accuracy improvement over the frame-only model of FIDO, the previous state-of-the-art system, and +0.002 over its full system. Our approach significantly enhances performance on rare frames, exhibiting an improvement of +0.044 over FIDO’s accuracy on frames with 5 or fewer samples, and on under-utilized frames, with an improvement of +0.139 on targets with a single candidate frame. Overall, our contributions address critical challenges and advance the state-of-the-art in frame-semantic parsing.
Climate change poses an urgent global problem that requires efficient data analysis mechanisms to provide insights into climate-related discussions on social media platforms. This paper presents a framework aimed at understanding social media users’ perceptions of various climate change topics and uncovering the insights behind these perceptions. Our framework employs large language model to develop a taxonomy of factual claims related to climate change and build a classification model that detects the truthfulness stance of tweets toward the factual claims. The findings reveal two key conclusions: (1) The public tends to believe the claims are true, regardless of the actual claim veracity; (2) The public shows a lack of discernment between facts and misinformation across different topics, particularly in areas related to politics, economy, and environment.
We present ClaimLens, an automated fact-checking system focused on voting-related factual claims. Existing fact-checking solutions often lack transparency, making it difficult for users to trust and understand the reasoning behind the outcomes. In this work, we address the critical need for transparent and explainable automated fact-checking solutions. We propose a novel approach that leverages frame-semantic parsing to provide structured and interpretable fact verification. By focusing on voting-related claims, we can utilize publicly available voting records from official United States congressional sources and the established Vote semantic frame to extract relevant information from claims. Furthermore, we propose novel data augmentation techniques for frame-semantic parsing, a task known to lack robust annotated data, which leads to a +9.5% macro F1 score on frame element identification over our baseline.