Jacob Aptekar


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
SECRET: Semi-supervised Clinical Trial Document Similarity Search
Trisha Das | Afrah Shafquat | Mandis Beigi | Jacob Aptekar | Jimeng Sun
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Clinical trials are vital for evaluation of safety and efficacy of new treatments. However, clinical trials are resource-intensive, time-consuming and expensive to conduct, where errors in trial design, reduced efficacy, and safety events can result in significant delays, financial losses, and damage to reputation. These risks underline the importance of informed and strategic decisions in trial design to mitigate these risks and improve the chances of a successful trial. Identifying similar historical trials is critical as these trials can provide an important reference for potential pitfalls and challenges including serious adverse events, dosage inaccuracies, recruitment difficulties, patient adherence issues, etc. Addressing these challenges in trial design can lead to development of more effective study protocols with optimized patient safety and trial efficiency. In this paper, we present a novel method to identify similar historical trials by summarizing clinical trial protocols and searching for similar trials based on a query trial’s protocol. Our approach significantly outperforms all baselines, achieving up to a 78% improvement in recall@1 and a 53% improvement in precision@1 over the best baseline. We also show that our method outperforms all other baselines in partial trial similarity search and zero-shot patient-trial matching, highlighting its superior utility in these tasks.