This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Ivan P.Yamshchikov
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Comics offer a compelling yet under-explored domain for computational narrative analysis, combining text and imagery in ways distinct from purely textual or audiovisual media. We introduce ComicScene154, a manually annotated dataset of scene-level narrative arcs derived from public-domain comic books spanning diverse genres. By conceptualizing comics as an abstraction for narrative-driven, multimodal data, we highlight their potential to inform broader research on multi-modal storytelling. To demonstrate the utility of ComicScene154, we present a baseline scene segmentation pipeline, providing an initial benchmark that future studies can build upon. Our results indicate that ComicScene154 constitutes a valuable resource for advancing computational methods in multimodal narrative understanding and expanding the scope of comic analysis within the Natural Language Processing community.
Russenorsk, a pidgin language historically used in trade interactions between Russian and Norwegian speakers, represents a unique linguistic phenomenon. In this paper, we attempt to analyze its lexicon using modern large language models (LLMs), based on surviving literary sources. We construct a structured dictionary of the language, grouped by synonyms and word origins. Subsequently, we use this dictionary to formulate hypotheses about the core principles of word formation and grammatical structure in Russenorsk and show which hypotheses generated by large language models correspond to the hypotheses previously proposed ones in the academic literature. We also develop a “reconstruction” translation agent that generates hypothetical Russenorsk renderings of contemporary Russian and Norwegian texts.
Modern language models are trained on large amounts of data. These data inevitably include controversial and stereotypical content, which contains all sorts of biases related to gender, origin, age, etc. As a result, the models express biased points of view or produce different results based on the assigned personality or the personality of the user. In this paper, we investigate various proxy measures of bias in large language models (LLMs). We find that evaluating models with pre-prompted personae on a multi-subject benchmark (MMLU) leads to negligible and mostly random differences in scores. However, if we reformulate the task and ask a model to grade the user’s answer, this shows more significant signs of bias. Finally, if we ask the model for salary negotiation advice, we see pronounced bias in the answers. With the recent trend for LLM assistant memory and personalization, these problems open up from a different angle: modern LLM users do not need to pre-prompt the description of their persona since the model already knows their socio-demographics.
This study explores four methods of generating paraphrases in Malayalam, utilizing resources available for English paraphrasing and pre-trained Neural Machine Translation (NMT) models. We evaluate the resulting paraphrases using both automated metrics, such as BLEU, METEOR, and cosine similarity, as well as human annotation. Our findings suggest that automated evaluation measures may not be fully appropriate for Malayalam, as they do not consistently align with human judgment. This discrepancy underscores the need for more nuanced paraphrase evaluation approaches especially for highly agglutinative languages.
Language models can greatly benefit from efficient tokenization. However, they still mostly utilize the classical Byte-Pair Encoding (BPE) algorithm, a simple and reliable method. BPE has been shown to cause such issues as under-trained tokens and sub-optimal compression that may affect the downstream performance. We introduce PickyBPE, a modified BPE algorithm that carries out vocabulary refinement during tokenizer training by removing merges that leave intermediate “junk” tokens. Our method improves vocabulary efficiency, eliminates under-trained tokens, and does not compromise text compression. Our experiments show that this method either improves downstream performance or does not harm it.
Evaluation plays a significant role in modern natural language processing. Most modern NLP benchmarks consist of arbitrary sets of tasks that neither guarantee any generalization potential for the model once applied outside the test set nor try to minimize the resource consumption needed for model evaluation. This paper presents a theoretical instrument and a practical algorithm to calculate similarity between benchmark tasks, we call this similarity measure “Vygotsky distance”. The core idea of this similarity measure is that it is based on relative performance of the “students” on a given task, rather that on the properties of the task itself. If two tasks are close to each other in terms of Vygotsky distance the models tend to have similar relative performance on them. Thus knowing Vygotsky distance between tasks one can significantly reduce the number of evaluation tasks while maintaining a high validation quality. Experiments on various benchmarks, including GLUE, SuperGLUE, CLUE, and RussianSuperGLUE, demonstrate that a vast majority of NLP benchmarks could be at least 40% smaller in terms of the tasks included. Most importantly, Vygotsky distance could also be used for the validation of new tasks thus increasing the generalization potential of the future NLP models.
This paper evaluates the performance of Large Language Models (LLMs) in authorship attribu- tion and authorship verification tasks for Latin texts of the Patristic Era. The study showcases that LLMs can be robust in zero-shot author- ship verification even on short texts without sophisticated feature engineering. Yet, the mod- els can also be easily “mislead” by semantics. The experiments also demonstrate that steering the model’s authorship analysis and decision- making is challenging, unlike what is reported in the studies dealing with high-resource mod- ern languages. Although LLMs prove to be able to beat, under certain circumstances, the traditional baselines, obtaining a nuanced and truly explainable decision requires at best a lot of experimentation.
We show differences between a language-and-vision model CLIP and two text-only models — FastText and SBERT — when it comes to the encoding of individuation information. We study latent representations that CLIP provides for substrates, granular aggregates, and various numbers of objects. We demonstrate that CLIP embeddings capture quantitative differences in individuation better than models trained on text-only data. Moreover, the individuation hierarchy we deduce from the CLIP embeddings agrees with the hierarchies proposed in linguistics and cognitive science.
An empirical investigation into the simulation of the Big5 personality traits by large language models (LLMs), namely Llama-2, GPT-4, and Mixtral, is presented. We analyze the personality traits simulated by these models and their stability. This contributes to the broader understanding of the capabilities of LLMs to simulate personality traits and the respective implications for personalized human-computer interaction.
With the rise of computational social science, many scholars utilize data analysis and natural language processing tools to analyze social media, news articles, and other accessible data sources for examining political and social discourse. Particularly, the study of the emergence of echo-chambers due to the dissemination of specific information has become a topic of interest in mixed methods research areas. In this paper, we analyze data collected from two news portals, Breitbart News (BN) and New York Times (NYT) to prove the hypothesis that the formation of echo-chambers can be partially explained on the level of an individual information consumption rather than a collective topology of individuals’ social networks. Our research findings are presented through knowledge graphs, utilizing a dataset spanning 11.5 years gathered from BN and NYT media portals. We demonstrate that the application of knowledge representation techniques to the aforementioned news streams highlights, contrary to common assumptions, shows relative “internal” neutrality of both sources and polarizing attitude towards a small fraction of entities. Additionally, we argue that such characteristics in information sources lead to fundamental disparities in audience worldviews, potentially acting as a catalyst for the formation of echo-chambers.
This paper investigates the communication styles and structures of Twitter (X) communities within the vaccination context. While mainstream research primarily focuses on the echo-chamber phenomenon, wherein certain ideas are reinforced and participants are isolated from opposing opinions, this study reveals the presence of diverse communication styles across various communities. In addition to the communities exhibiting echo-chamber behavior, this research uncovers communities with distinct communication patterns. By shedding light on the nuanced nature of communication within social networks, this study emphasizes the significance of understanding the diversity of perspectives within online communities.
In the rapidly evolving landscape of Large Language Models (LLMs), introduction of well-defined and standardized evaluation methodologies remains a crucial challenge. This paper traces the historical trajectory of LLM evaluations, from the foundational questions posed by Alan Turing to the modern era of AI research. We categorize the evolution of LLMs into distinct periods, each characterized by its unique benchmarks and evaluation criteria. As LLMs increasingly mimic human-like behaviors, traditional evaluation proxies, such as the Turing test, have become less reliable. We emphasize the pressing need for a unified evaluation system, given the broader societal implications of these models. Through an analysis of common evaluation methodologies, we advocate for a qualitative shift in assessment approaches, underscoring the importance of standardization and objective criteria. This work serves as a call for the AI community to collaboratively address the challenges of LLM evaluation, ensuring their reliability, fairness, and societal benefit.
In this position paper, we contend that advancing our understanding of narrative and the effective generation of longer, subjectively engaging texts is crucial for progress in modern Natural Language Processing (NLP) and potentially the broader field of Artificial Intelligence. We highlight the current lack of appropriate datasets, evaluation methods, and operational concepts necessary for initiating work on narrative processing.
The extensive surviving corpus of the ancient scholar Plutarch of Chaeronea (ca. 45-120 CE) also contains several texts which, according to current scholarly opinion, did not originate with him and are therefore attributed to an anonymous author Pseudo-Plutarch. These include, in particular, the work Placita Philosophorum (Quotations and Opinions of the Ancient Philosophers), which is extremely important for the history of ancient philosophy. Little is known about the identity of that anonymous author and its relation to other authors from the same period. This paper presents a BERT language model for Ancient Greek. The model discovers previously unknown statistical properties relevant to these literary, philosophical, and historical problems and can shed new light on this authorship question. In particular, the Placita Philosophorum, together with one of the other Pseudo-Plutarch texts, shows similarities with the texts written by authors from an Alexandrian context (2nd/3rd century CE).
Current state-of-the-art NLP systems use large neural networks that require extensive computational resources for training. Inspired by human knowledge acquisition, researchers have proposed curriculum learning - sequencing tasks (task-based curricula) or ordering and sampling the datasets (data-based curricula) that facilitate training. This work investigates the benefits of data-based curriculum learning for large language models such as BERT and T5. We experiment with various curricula based on complexity measures and different sampling strategies. Extensive experiments on several NLP tasks show that curricula based on various complexity measures rarely have any benefits, while random sampling performs either as well or better than curricula.
This paper presents StoryDB — a broad multi-language dataset of narratives. StoryDB is a corpus of texts that includes stories in 42 different languages. Every language includes 500+ stories. Some of the languages include more than 20 000 stories. Every story is indexed across languages and labeled with tags such as a genre or a topic. The corpus shows rich topical and language variation and can serve as a resource for the study of the role of narrative in natural language processing across various languages including low resource ones. We also demonstrate how the dataset could be used to benchmark three modern multilanguage models, namely, mDistillBERT, mBERT, and XLM-RoBERTa.
This paper shows that standard assessment methodology for style transfer has several significant problems. First, the standard metrics for style accuracy and semantics preservation vary significantly on different re-runs. Therefore one has to report error margins for the obtained results. Second, starting with certain values of bilingual evaluation understudy (BLEU) between input and output and accuracy of the sentiment transfer the optimization of these two standard metrics diverge from the intuitive goal of the style transfer task. Finally, due to the nature of the task itself, there is a specific dependence between these two metrics that could be easily manipulated. Under these circumstances, we suggest taking BLEU between input and human-written reformulations into consideration for benchmarks. We also propose three new architectures that outperform state of the art in terms of this metric.
This paper focuses on latent representations that could effectively decompose different aspects of textual information. Using a framework of style transfer for texts, we propose several empirical methods to assess information decomposition quality. We validate these methods with several state-of-the-art textual style transfer methods. Higher quality of information decomposition corresponds to higher performance in terms of bilingual evaluation understudy (BLEU) between output and human-written reformulations.
This paper explores modern word embeddings in the context of sound symbolism. Using basic properties of the representations space one can construct semantic axes. A method is proposed to measure if the presence of individual sounds in a given word shifts its semantics of that word along a specific axis. It is shown that, in accordance with several experimental and statistical results, word embeddings capture symbolism for certain sounds.
This paper addresses author-stylized text generation. Using a version of a language model with extended phonetic and semantic embeddings for poetry generation we show that phonetics has comparable contribution to the overall model performance as the information on the target author. Phonetic information is shown to be important for English and Russian language. Humans tend to attribute machine generated texts to the target author.