This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
IslamNassar
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Evaluation and Management (E/M) coding, under the Current Procedural Terminology (CPT) taxonomy, documents medical services provided to patients by physicians. Used primarily for billing purposes, it is in physicians’ best interest to provide accurate CPT E/M codes. Automating this coding task will help alleviate physicians’ documentation burden, improve billing efficiency, and ultimately enable better patient care. However, a number of real-world complexities have made E/M encoding automation a challenging task. In this paper, we elaborate some of the key complexities and present ProFees, our LLM-based framework that tackles them, followed by a systematic evaluation. On an expert-curated real-world dataset, ProFees achieves an increase in coding accuracy of more than 36% over a commercial CPT E/M coding system and almost 5% over our strongest single-prompt baseline, demonstrating its effectiveness in addressing the real-world complexities.
This paper studies the use of language models as a source of synthetic unlabeled text for NLP. We formulate a general framework called “generate, annotate, and learn (GAL)” to take advantage of synthetic text within knowledge distillation, self-training, and few-shot learning applications. To generate high-quality task-specific text, we either fine-tune LMs on inputs from the task of interest, or prompt large LMs with few examples. We use the best available classifier to annotate synthetic text with soft pseudo labels for knowledge distillation and self-training, and use LMs to obtain hard labels for few-shot learning. We train new supervised models on the combination of labeled and pseudo-labeled data, which results in significant gains across several applications. We investigate key components of GAL and present theoretical and empirical arguments against the use of class-conditional LMs to generate synthetic labeled text instead of unlabeled text. GAL achieves new state-of-the-art knowledge distillation results for 6-layer transformers on the GLUE leaderboard.