This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Ishan SanjeevUpadhyay
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Hateful and offensive content on social media platforms can have negative effects on users and can make online communities more hostile towards certain people and hamper equality, diversity and inclusion. In this paper, we describe our approach to classify homophobia and transphobia in social media comments. We used an ensemble of transformer-based models to build our classifier. Our model ranked 2nd for English, 8th for Tamil and 10th for Tamil-English.
Over the past few years, there has been a growing concern around toxic positivity on social media which is a phenomenon where positivity is used to minimize one’s emotional experience. In this paper, we create a dataset for toxic positivity classification from Twitter and an inspirational quote website. We then perform benchmarking experiments using various text classification models and show the suitability of these models for the task. We achieved a macro F1 score of 0.71 and a weighted F1 score of 0.85 by using an ensemble model. To the best of our knowledge, our dataset is the first such dataset created.
This paper aims to describe the approach we used to detect hope speech in the HopeEDI dataset. We experimented with two approaches. In the first approach, we used contextual embeddings to train classifiers using logistic regression, random forest, SVM, and LSTM based models. The second approach involved using a majority voting ensemble of 11 models which were obtained by fine-tuning pre-trained transformer models (BERT, ALBERT, RoBERTa, IndicBERT) after adding an output layer. We found that the second approach was superior for English, Tamil and Malayalam. Our solution got a weighted F1 score of 0.93, 0.75 and 0.49 for English, Malayalam and Tamil respectively. Our solution ranked 1st in English, 8th in Malayalam and 11th in Tamil.
This paper describes our approach (IIITH) for SemEval-2021 Task 5: HaHackathon: Detecting and Rating Humor and Offense. Our results focus on two major objectives: (i) Effect of task adaptive pretraining on the performance of transformer based models (ii) How does lexical and hurtlex features help in quantifying humour and offense. In this paper, we provide a detailed description of our approach along with comparisions mentioned above.