This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
IsabelleRobba
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Les systèmes de questions réponses recherchent la réponse à une question posée en langue naturelle dans un ensemble de documents. Les collectionsWeb diffèrent des articles de journaux de par leurs structures et leur style. Pour tenir compte de ces spécificités nous avons développé un système fondé sur une approche robuste de validation où des réponses candidates sont extraites à partir de courts passages textuels puis ordonnées par apprentissage. Les résultats montrent une amélioration du MRR (Mean Reciprocal Rank) de 48% par rapport à la baseline.
Question answering (QA) systems aim at retrieving precise information from a large collection of documents. To be considered as reliable by users, a QA system must provide elements to evaluate the answer. This notion of answer justification can also be useful when developping a QA system in order to give criteria for selecting correct answers. An answer justification can be found in a sentence, a passage made of several consecutive sentences or several passages of a document or several documents. Thus, we are interesting in pinpointing the set of information that allows to verify the correctness of the answer in a candidate passage and the question elements that are missing in this passage. Moreover, the relevant information is often given in texts in a different form from the question form: anaphora, paraphrases, synonyms. In order to have a better idea of the importance of all the phenomena we underlined, and to provide enough examples at the QA developer's disposal to study them, we decided to build an annotated corpus.
This paper presents EASY, which has been the first campaign evaluating syntactic parsers on all the common syntactic phenomena and a large set of dependency relations. The language analyzed was French. During this campaign, an annotation scheme has been elaborated with the different actors: participants and corpus providers; then a corpus made of several syntactic materials has been built and annotated: it reflects a great variety of linguistic styles (from literature to oral transcriptions, and from newspapers to medical texts). Both corpus and annotation scheme are here briefly presented. Moreover, evaluation measures are explained and detailed results are given. The results of the 15 parsers coming from 12 teams are analyzed. To conclude, a first experiment aiming to combine the outputs of the different systems is shown.
Les systèmes de questions-réponses (SQR) ont pour but de trouver une information précise extraite d’une grande collection de documents comme le Web. Afin de pouvoir comparer les différentes stratégies possibles pour trouver une telle information, il est important d’évaluer ces systèmes. L’objectif d’une tâche de validation de réponses est d’estimer si une réponse donnée par un SQR est correcte ou non, en fonction du passage de texte donné comme justification. En 2006, nous avons participé à une tâche de validation de réponses, et dans cet article nous présentons la stratégie que nous avons utilisée. Celle-ci est fondée sur notre propre système de questions-réponses. Le principe est de comparer nos réponses avec les réponses à valider. Nous présentons les résultats obtenus et montrons les extensions possibles. À partir de quelques exemples, nous soulignons les difficultés que pose cette tâche.
Dans cet article, nous présentons les résultats de la campagne d’évaluation EASY des analyseurs syntaxiques du français. EASY a été la toute première campagne d’évaluation comparative des analyseurs syntaxiques du français en mode boîte noire utilisant des mesures objectives quantitatives. EASY fait partie du programme TECHNOLANGUE du Ministère délégué à la Recherche et à l’Éducation, avec le soutien du ministère de délégué à l’industrie et du ministère de la culture et de la communication. Nous exposons tout d’abord la position de la campagne par rapport aux autres projets d’évaluation en analyse syntaxique, puis nous présentos son déroulement, et donnons les résultats des 15 analyseurs participants en fonction des différents types de corpus et des différentes annotations (constituants et relations). Nous proposons ensuite un ensemble de leçons à tirer de cette campagne, en particulier à propos du protocole d’évaluation, de la définition de la segmentation en unités linguistiques, du formalisme et des activités d’annotation, des critères de qualité des données, des annotations et des résultats, et finalement de la notion de référence en analyse syntaxique. Nous concluons en présentant comment les résultats d’EASY se prolongent dans le projet PASSAGE (ANR-06-MDCA-013) qui vient de débuter et dont l’objectif est d’étiqueter un grand corpus par plusieurs analyseurs en les combinant selon des paramètres issus de l’évaluation.
Les systèmes de question-réponse sont la plupart du temps composés de trois grands modules : l’analyse de la question, la sélection des documents et l’extraction de la réponse. Dans cet article, nous nous intéressons au troisième module, plus particulièrement dans le cas plus délicat où la réponse attendue n’est pas du type entitée nommée. Nous décrivons comment l’analyseur Cass est employé pour marquer la réponse dans les phrases candidates et nous évaluons les résultats de cette approche. Au préalable, nous décrivons et évaluons le module dédié à l’analyse de la question, car les informations qui en sont issues sont nécessaires à notre étape finale d’extraction.
This paper presents the protocol of EASY the evaluation campaign for syntactic parsers of French in the EVALDA project of the TECHNOLANGUE program. We describe the participants, the corpus and its genre partitioning, the annotation scheme, which allows for the annotation of both constituents and relations, the evaluation methodology and, as an illustration, the results obtained by one participant on half of the corpus.
Question-answering (QA) systems aim at providing either a small passage or just the answer to a question in natural language. We have developed several QA systems that work on both English and French. This way, we are able to provide answers to questions given in both languages by searching documents in both languages also. In this article, we present our French monolingual system FRASQUES which participated in the EQueR evaluation campaign of QA systems for French in 2004. First, the QA architecture common to our systems is shown. Then, for every step of the QA process, we consider which steps are language-independent, and for those that are language-dependent, the tools or processes that need to be adapted to switch for one language to another. Finally, our results at EQueR are given and commented; an error analysis is conducted, and the kind of knowledge needed to answer a question is studied.
Cet article présente l’annotation en constituants menée dans le cadre d’un protocole d’évaluation des analyseurs syntaxiques (mis au point dans le pré-projet PEAS, puis dans le projet EASY). Le choix des constituants est décrit en détail et une première évaluation effectuée à partir des résultats de deux analyseurs est donnée.
This paper presents EASY (Evaluation of Analyzers of SYntax), an ongoing evaluation campaign of syntactic parsing of French, a subproject of EVALDA in the French TECHNOLANGUE program. After presenting the elaboration of the annotation formalism, we describe the corpus building steps, the annotation tools, the evaluation measures and finally, plans to produce a validated large linguistic resource, syntactically annotated
La fiabilité des réponses qu’il propose, ou un moyen de l’estimer, est le meilleur atout d’un système de question-réponse. A cette fin, nous avons choisi d’effectuer des recherches dans des ensembles de documents différents et de privilégier des résultats qui sont trouvés dans ces différentes sources. Ainsi, le système QALC travaille à la fois sur une collection finie d’articles de journaux et sur le Web.
Cet article montre que pour une application telle qu’un système de question – réponse, une analyse par mots clés de la question est insuffisante et qu’une analyse plus détaillée passant par une analyse syntaxique permet de fournir des caractéristiques permettant une meilleure recherche de la réponse.
Le système de question-réponse QALC utilise les documents sélectionnés par un moteur de recherche pour la question posée, les sépare en phrases afin de comparer chaque phrase avec la question, puis localise la réponse soit en détectant l’entité nommée recherchée, soit en appliquant des patrons syntaxiques d’extraction de la réponse, sortes de schémas figés de réponse pour un type donné de question. Les patrons d’extraction que nous avons définis se fondent sur la notion de focus, qui est l’élément important de la question, celui qui devra se trouver dans la phrase réponse. Dans cet article, nous décrirons comment nous déterminons le focus dans la question, puis comment nous l’utilisons dans l’appariement question-phrase et pour la localisation de la réponse dans les phrases les plus pertinentes retenues.