This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
IreneBenedetto
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Automatic and early detection of foodborne hazards is crucial for preventing outbreaks. Existing AI-based solutions often struggle with the complexity and noise of food recall reports and overcome the dependency between product and hazard labels. We introduce a methodology to classify reports on food-related incidents to address these challenges. Our approach leverages LLM-based information extraction to minimize report variability, alongside a two-stage classification pipeline. The first model assigns coarse-grained labels, narrowing the space of eligible fine-grained labels for the second model. This sequential process allows us to capture hierarchical label dependencies between products and hazards and their respective categories. Additionally, we design each model with two classification heads relying on the inherent relations between food products and associated hazards. We validate our approach on two multi-label classification sub-tasks. Experimental results demonstrate the effectiveness of our approach, achieving an improvement of +30% and +40% in classification performance compared to the baseline.
Large Language Models (LLMs) have demonstrated impressive performance across various tasks. However, current training approaches combine standard cross-entropy loss with extensive data, human feedback, or ad hoc methods to enhance performance. These solutions are often not scalable or feasible due to their associated costs, complexity, or resource requirements. This study investigates the use of established semantic segmentation loss functions in natural language generation to create a versatile, practical, and scalable solution for fine-tuning different architectures. We evaluate their effectiveness in solving Math Word Problems and question answering across different models of varying sizes. For the analyzed tasks, we found that the traditional Cross-Entropy loss represents a sub-optimal choice, while models trained to minimize alternative (task-dependent) losses, such as Focal or Lovász, achieve a mean improvement of +36% on exact match without requiring additional data or human feedback. These findings suggest a promising pathway for more efficient and accessible training processes.
Large language models (LLMs) have recently obtained strong performance on complex reasoning tasks. However, their capabilities in specialized domains like law remain relatively unexplored. We present CLUEDO, a system to tackle a novel legal reasoning task that involves determining if a provided answer correctly addresses a legal question derived from U.S. civil procedure cases. CLUEDO utilizes multiple collaborator models that are trained using multiple-choice prompting to choose the right label and generate explanations. These collaborators are overseen by a final “detective” model that identifies the most accurate answer in a zero-shot manner. Our approach achieves an F1 macro score of 0.74 on the development set and 0.76 on the test set, outperforming individual models. Unlike the powerful GPT-4, CLUEDO provides more stable predictions thanks to the ensemble approach. Our results showcase the promise of tailored frameworks to enhance legal reasoning capabilities in LLMs.
The use of Natural Language Processing techniques in the legal domain has become established for supporting attorneys and domain experts in content retrieval and decision-making. However, understanding the legal text poses relevant challenges in the recognition of domain-specific entities and the adaptation and explanation of predictive models. This paper addresses the Legal Entity Name Recognition (L-NER) and Court judgment Prediction (CPJ) and Explanation (CJPE) tasks. The L-NER solution explores the use of various transformer-based models, including an entity-aware method attending domain-specific entities. The CJPE proposed method relies on hierarchical BERT-based classifiers combined with local input attribution explainers. We propose a broad comparison of eXplainable AI methodologies along with a novel approach based on NER. For the L-NER task, the experimental results remark on the importance of domain-specific pre-training. For CJP our lightweight solution shows performance in line with existing approaches, and our NER-boosted explanations show promising CJPE results in terms of the conciseness of the prediction explanations.
Emotional reactions to Online Social Network posts have recently gained importance in the study of the online ecosystem. Prior to post publication, the number of received reactions can be predicted based on either the textual content of the post or the related metadata. However, existing approaches suffer from both the lack of semantic-aware language understanding models and the limited explainability of the prediction models. To overcome these issues, we present a new transformer-based method to predict the number of emotional reactions of different types to social posts. It leverages the attention mechanism to capture arbitrary semantic textual relations neglected by prior works. Furthermore, it also provides end-users with textual explanations of the predictions. The results achieved on a large collection of Facebook posts confirm the applicability of the presented methodology.