Ipsita Mohanty


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
DEFTri: A Few-Shot Label Fused Contextual Representation Learning For Product Defect Triage in e-Commerce
Ipsita Mohanty
Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)

Defect Triage is a time-sensitive and critical process in a large-scale agile software development lifecycle for e-commerce. Inefficiencies arising from human and process dependencies in this domain have motivated research in automated approaches using machine learning to accurately assign defects to qualified teams. This work proposes a novel framework for automated defect triage (DEFTri) using fine-tuned state-of-the-art pre-trained BERT on labels fused text embeddings to improve contextual representations from human-generated product defects. For our multi-label text classification defect triage task, we also introduce a Walmart proprietary dataset of product defects using weak supervision and adversarial learning, in a few-shot setting.
Search
Co-authors
    Venues
    Fix data